Applied Foundation Testing Alabama Certificate of Authorization CA3058-E

June 8, 2018 Revision 1: June 26, 2018 Revision 2: July 2, 2018

Report of High-Strain Dynamic Pile Testing and Axial Statnamic Load Testing TP-23C I-10 over Mobile River and Bayway Load Test Program Mobile Country, Alabama AFT Project No.: 118008

Authored By:

Michael P. M. A

Michael P. Worsham, P.E. Senior Geotechnical Engineer

Donald T. Robertson, P.E. Principal Geotechnical Engineer Alabama License No.: 22873

For: Mr. Davis Daniel Jordan Pile Driving, Inc. 301 N. Water Street Mobile, Alabama 36652

REVISION 2: Revision 2 includes placement of the approved inspector's pile driving log in <u>Appendix A</u>.

REVISION 1: Revision 1 dated June 26, 2018 to the original report dated June 8, 2018 included the following changes: The Generalized Soil Conditions section was changed to indicate that the groundwater depth, not elevation, noted in boring BW-23 was 0.0 feet. In the High-Strain Dynamic Pile Testing section, the pile tip elevation after jetting was changed so that it is based on the depth of the pile tip at start of impact driving.

INTRODUCTION

The proposed I-10 Mobile River Bridge and Bayway project includes the construction of a new six-lane bridge across the Mobile River and a new eight-lane Bayway. A load test program has been conducted in advance of the construction contract to optimize the foundation design. Foundation types included in the load test program include two HP14x89 steel H-piles, two 18-inch square prestressed concrete piles, one 30-inch square prestressed concrete pile, five 54-inch diameter spun-cast concrete cylinder piles, one 60-inch diameter steel pipe pile, and one 72-inch diameter drilled shaft.

This report summarizes the installation and testing of the 110-feet long, 30-inch square prestressed concrete pile at location TP-23C. High-strain dynamic pile testing, also known as PDA, was performed during initial drive, 1 day restrike, and 16 day restrike. Axial Statnamic load testing was performed 15 days after the initial drive of TP-23C. A 16 day restrike was subsequently performed 1 day after axial Statnamic load testing. A summary of the test dates is included in <u>Table 1</u> below.

Test Pile	Test Description	Test Date		
	Initial Drive	4/25/2018		
TP-23C	1 Day Restrike	4/26/2018		
17-250	Statnamic Load Testing	5/10/2018		
	16 Day Restrike	5/11/2018		

Table 1: Summary of Test Dates

The project plans indicate test pile TP-23C was located at station 630+43.00 offset left 150 feet, adjacent to the north of the existing I-10 Bayway. Please refer to the project source documents for a site plan of the actual location of the test piles.

Installation of test pile TP-23C was performed by Jordan Pile Driving, Inc. In addition, Jordan Pile Driving, Inc. provided the over-water support frame and necessary office and field support to carry out the axial Statnamic load testing. Applied Foundation Testing (AFT) was the specialty engineering firm performing the dynamic pile testing and monitoring the axial Statnamic load test. Dynamic pile testing was performed by Mr. Michael Worsham, P.E. Axial Statnamic load testing was performed by Mr. Donald Robertson, P.E., Mr. Michael Worsham, P.E., Mr. Jason Frederick, and Mr. Zack Cohens. Data analysis and reporting was performed by Mr. Donald Robertson, P.E.

This report contains a compilation of the results for the dynamic pile testing and axial Statnamic load testing for TP-23C. This report includes an overview of the testing program, tabular and graphical representations of the data, discussion of the results, and instrumentation calibrations.

GENERALIZED SOIL CONDITIONS

Thompson Engineering performed the subsurface exploration as part of this project. The subsurface exploration consisted of drilling a single Standard Penetration Test (SPT) boring near each of the proposed foundation load test locations identified for the project. The nearest soil boring to TP-23C is boring BW-23 located at station 632+20.32 offset left 15.51 feet.

A copy of soil boring BW-23 is included in <u>Appendix E</u>. Detailed descriptions of the subsurface conditions encountered are presented in this attached soil boring. A summary of the soil conditions given in <u>Table 2</u> below represents a summary of conditions as indicated in the provided materials and is included only to assist in evaluation of the load test data. For further details regarding the soil conditions at the test site and elsewhere, the reader should reference the project source documents.

The ground water depth noted in boring log BW-23 was 0.0 feet. <u>Table 2</u> below provides a summary of the subsurface conditions.

Average Elevation From - To ⁽²⁾	Material Description	Typical N-Value Range
-4.0 to -15.8	Silty Sand (SM)	0
-15.8 to -20.8	Sand (SP)	0
-20.8 to -35.8	Sandy Fat Clay (CH)	0
-35.8 to -40.8	Silty Sand (SM)	0
-40.8 to -45.8	Clayey Sand (SC)	3
-45.8 to -50.8	Fat Clay (CH)	0
-50.8 to -55.8	Sand (SP)	NA
-55.8 to -60.8	Sandy Lean Clay (CL)	3
-60.8 to -80.8	Silty Sand (SM)	11 to 24
-80.8 to -110.8	Sand; Sand with Gravel (SP)	24 to 57
-110.8 to -130.8	Lean Clay; Fat Clay (CL and CH)	24 to 39
-130.8 to -155.8	Sand with Silt (SP-SM)	60 to 70

 Table 2: Description of Subsurface Soil Conditions⁽¹⁾

Note 1: Table created from Thompson Engineering Test Boring Record BW-23 contained in the project plans. Note 2: Elevations are referenced to North American Vertical Datum of 1988 (NAVD)

HIGH-STRAIN DYNAMIC PILE TESTING (PDA)

The test pile TP-23C was installed by Jordan Pile Driving, Inc. The test pile was prepared for high-strain dynamic testing by drilling holes and setting drop-in anchors for sensor attachment two pile diameters, or 60 inches, below the pile top.

Prior to driving pile TP-23C, the pile was jetted until the pile tip was at approximate elevation -49 feet. Pile TP-23C was then impact driven using a Delmag D62-22 open-ended diesel pile driving hammer. The Delmag D62-22 diesel hammer has a maximum rated energy of 164,250 foot-pounds (ram weight of 13,700 pounds at a stroke height of 11.25 feet). We understand the Delmag D62-22 hammer utilized a hammer cushion consisting of 6 inches of micarta and aluminum and a pile cushion consisting of 10 inches of pine plywood. The same well compressed pile cushion used for initial drive of the pile was utilized for the restrikes.

Applied Foundation Testing performed dynamic pile testing using a Pile Driving Analyzer Model PAX manufactured by Pile Dynamics, Inc. Dynamic testing was accomplished by externally attaching two piezo-resistive accelerometers and two strain transducers and taking measurements during the initial drive and subsequent restrikes. Calibration information for the sensors utilized is included in <u>Appendix F</u>. The dynamic pile testing was performed in general accordance with the project plans and special provisions and ASTM D4945 *"Standard Test Method for High-Strain Dynamic Testing of Deep Foundations"*. During the initial drive, TP-23C was driven to where the sensor attachment points were approximately 5 feet above the waterline. At this point, the pile top was approximately 2 feet above the pile template/over-water support frame which is optimal for set-up of the Statnamic testing device.

Plots and tabular summaries of the dynamic testing results are included in <u>Appendix B</u>. In general, these summaries include blows per foot (BLC), penetration depth below reference, maximum Case method resistance, auto capacity method resistance for friction piles (RA2), maximum compressive stress (CSX), compressive stress at the bottom of pile (CSB), maximum tensile stress (TSX), stroke (STK), maximum transfer energy (EMX), and beta pile integrity factor (BTA). The top of the pile driving template was used as a reference for measuring penetration depth during the initial drive and restrikes. The top of the pile driving template was located at elevation 11.3 feet. The mudline elevation was measured as -13.1 feet. A summary of the test pile installation is provided in <u>Tables 3 and 4</u> below.

Test Pile	Hammer Model	Approximate Reference Elevation (feet)	Approximate Ground Elevation (feet)	Approximate Final Pile Top Elevation (feet)	Approximate Final Tip Elevation ⁽¹⁾ (feet)
TP-23C	Delmag D62-22	⁺ 11.3	-13.1	+12.4	-97.6

Table 3: Summary of Pile Driving Information	Table 3:	Summary	of Pile Drivi	ing Information
--	----------	---------	---------------	-----------------

Note 1: Approximate reference elevation based on contractor survey measurement. Approximate final pile tip elevation based on depth below reference, pile movements during restrikes, and load test permanent displacement.

7	ſest Pile	EOD or BOR ⁽¹⁾	Blows per Foot at EOD or Blows per Inch for Restrike	Max. CSX Stress (ksi)	Avg. CSX Stress (ksi)	Max. TSX Stress (ksi)	Avg. TSX Stress (ksi)	Max. CSB Stress (ksi)	Avg. CSB Stress (ksi)	Avg. Transfer Energy (k- ft) / Approx. Stroke (ft.)
	TP-23C	EOD	62 Blows Per Foot	3.38	2.01	1.25	0.68	2.02	1.14	29.8/7.43

Table 4: Summary of Dynamic Pile Testing Results

Test Pile	EOD or BOR ⁽¹⁾	Blows per Foot at EOD or Blows per Inch for Restrike	Max. CSX Stress (ksi)	Avg. CSX Stress (ksi)	Max. TSX Stress (ksi)	Avg. TSX Stress (ksi)	Max. CSB Stress (ksi)	Avg. CSB Stress (ksi)	Avg. Transfer Energy (k- ft) / Approx. Stroke (ft.)
	1 Day RS	9 Blows/1", 7 Blows/1", 7 Blows/1", 6 Blows/1"	2.86	2.08	0.58	0.30	2.24	1.63	30.9/8.70
	16 Day RS	11 Blows/1", 12 Blows/1", 12 Blows/1"	2.27	1.98	0.25	0.08	1.93	1.68	27.2/7.82

Note 1: EOD – End of Initial Drive; RS – Restrike

Allowable maximum driving stresses for the square prestressed concrete piles are defined by the formulas located in the project special provisions. The maximum allowable compressive stress limit is defined as 4.1ksi – effective prestress. The maximum allowable tensile stress limit is defined as $3\sqrt{(f_c)}$ + effective prestress.

In the above formula f'c is defined as the minimum concrete compressive strength for the piles, which is 5,000 psi per Plan Sheet 15. Per Plan Sheet 15, the initial prestress depending on the strand type ranges from 903 psi to 1,011 psi. The prestress strand type used for the test piles is not known by AFT. Assuming a loss of 20 percent from initial prestress provides effective prestress values of 722 psi (0.72 ksi) or 809 psi (0.81 ksi) depending on strand type used. Utilizing the worst case of these values, the maximum allowable compressive stress is calculated as 3.29 ksi, and the maximum allowable tensile stress is calculated as 0.93 ksi.

The dynamic pile testing measurements indicate the maximum compressive stress (CSX) and maximum tensile stress (TSX) exceeded allowable stress limits for portions of the initial drive. In general, the high tensile stresses for some blows occurred early in the initial drive in softer driving conditions and near the end of drive when the pile cushion was significantly compressed. The high compressive stresses for some blows were recorded during high energy blows such as when the hammer was restarted with high strokes after an interruption in driving. In a production pile driving stresses would be needed. It is not recommended letting driving stresses reach levels exceeding allowable stress limits during production pile driving and restrikes.

The dynamic test data does not show any signs of integrity problems for TP-23C. BTA values below 100 shown in the dynamic testing data summaries are likely due to soil effects.

SIGNAL MATCHING ANALYSIS

Signal matching analyses were performed using the computer program CAPWAP (version 2014) to further evaluate the field measurements. Summaries of these analyses are presented in <u>Table 5</u> below. The complete analyses are included in <u>Appendix C</u>. Signal matching analysis is considered a standard procedure to estimate the total ultimate resistance as well as estimate the resistance distribution (shaft and toe) from the dynamic pile testing data. The signal matching approach is used to back calculate various soil parameters. The program uses the data measured during a single blow as a boundary condition and the user performs many iterations on soil parameters to make a calculated wave-up match the measured one.

Test Pile	EOD or Restrike	Blow No.	R _{ult} (kips)	R _{shaft} (kips)	R _{end} (kips)	Max. Case Method JC Damping Factor	EMX (k- ft)/Stroke (feet)	Qs (in)	Qt (in)	Ss (s/ft)	St (s/ft)	Match Quality
	EOD	1457	440	103	337	0.60	32.1/ 7.25	0.06	0.27	0.20	0.26	3.60
TP- 23C	1 Day Restrike	6	750	321	429	0.58	50.2/ 12.60	0.04	0.34	0.25	0.33	1.68
	16 Day Restrike	12	770	341	429	0.57	29.1/ 7.79	0.04	0.22	0.40	0.41	2.27

 Table 5: Signal Matching Results Summary

The results of the CAPWAP signal matching analyses generally have the most confidence in the total resistance value, and to a lesser extent the resistance distribution in side resistance along the length of the pile and end bearing resistance at the pile bottom. This is generally attributed to intricacies in separating side resistance and end bearing resistance from the total resistance using signal matching techniques.

The signal matching analysis for TP-23C indicated a total ultimate resistance of 440 kips at end of initial drive, 750 kips during the 1 day restrike; and 770 kips during the 16 day restrike (1 day after axial Statnamic load testing). Based on the set measurements during initial drive and restrikes for TP-23C, the resistance values presented in this report may not be fully mobilized during restrikes due to small pile movements.

AXIAL STATNAMIC LOAD TESTING

Test pile TP-23C was subjected to axial Statnamic load testing (commonly referred to as Rapid load testing) on May 10, 2018, or 15 days after initial drive of the pile. Load testing was accomplished utilizing the 19MN Statnamic device in a single load cycle.

AXIAL STATNAMIC INSTRUMENTATION

The top of the pile was instrumented with a calibrated load cell and accelerometers (to measure acceleration and to calculate velocity and displacement). A brief description of the instrumentation used during the Statnamic test is given below. Calibration data is included in <u>Appendix F</u>.

<u>Statnamic Device</u> - The Statnamic load testing was accomplished with a device capable of applying a force of approximately 19 MN. This device uses a controlled burn of fuel to generate gas pressure inside a cylinder and ram (analogous to a gas actuated jack). As the pressure builds, it reacts against a heavy mass above the foundation. The pressure eventually builds high enough to propel the reaction mass upward; in turn a downward load is simultaneously applied to the foundation top which is many times greater than the weight of the reaction mass. The Statnamic device produces a time dependent load on the order of 1/2 second or less. The load produced is not an impact, which makes the Statnamic analysis very simplified and more reliable than dynamic techniques.

Load Cell - The load cell is calibrated full scale and manufactured by the George Kelk Corporation.

<u>Accelerometers</u> - Three accelerometers were arranged across the top of the shaft approximately 120 degrees apart during Statnamic testing. The accelerometers were manufactured by PCB Piezotronics, Inc. From the measured accelerations, shaft displacements at each accelerometer location were calculated. This provides very reliable and highly accurate displacement data.

<u>Data Acquisition System</u> - A National Instruments Data Acquisition System recorded the load cell and accelerometers at 5,000 samples per second for each sensor. This was more than ample to fully define the load and displacement response of the drilled shaft foundation during the load test.

AXIAL STATNAMIC TEST SET UP

Prior to the axial Statnamic load testing, Jordan Pile Driving set-up the over-water frame to support the test frame. This included driving pipe piles and constructing a work platform. This over-water frame was also used as the pile driving template. The top of pile concrete was in good condition after pile driving and required only a thin layer of quick set grout to achieve a level and smooth surface.

Additional preparations for the Statnamic load test included the following:

- Construct over-water support frame and mats to support the Statnamic device at the appropriate testing elevation and allow access to the pile.
- Prepare pile top with thin layer of quick set grout for a level and smooth testing surface.
- Assembly of the Statnamic load system as follows:
 - Placement of the load cell and Statnamic piston on the pile top.
 - Placement of the mechanical catch frame on support mats.
 - Placement of the Statnamic silencer and reaction masses on the pile top.
- Placement of accelerometers near the pile top.
- Connecting all instrumentation (load cell and accelerometers) to the data acquisition system and computer.

AXIAL STATNAMIC LOAD TEST RESULTS

The analysis of the Statnamic load test data was performed using the Unloading Point Method (UPM). Due to the rapid application of the load, it was also necessary to account for rate of loading effects. The analysis presented herein was performed using the UPM method in conjunction with rate effect factors (REF) in as suggested in the National Cooperative Highway Research Program (NCHRP) Project: NCHRP 21-08.

Test Pile TP-23C was loaded to a maximum derived static load of 1,060 kips. The maximum displacement during testing was 2.55 inches. The measured permanent displacement upon complete unloading was 2.55 inches. <u>Table 6</u> presents a summary of the maximum derived static load, maximum displacement, and the permanent displacement upon unloading. The derived static load versus displacement response for TP-23C is shown in <u>Figure 1</u> located in <u>Appendix D</u>.

Description	Data
Maximum Derived Static Load	1,060 kips
Maximum Displacement	2.55 inches
Permanent Displacement	2.55 inches

Table 6: Summary of Load and Displacement for Test Pile TP-23C

Additional commentary on the data reduction is described as follows. During the Statnamic test, the load cell and accelerometers were monitored with a high speed data acquisition system. This data is then analyzed to determine the overall static resistance. Before performing any static analysis of the data, the data must be "pre-processed", plotted and evaluated. Specifically, the load cell must be offset to account for the weight of the Statnamic reaction masses, which are supported by the pile prior to the load test. The applied Statnamic load versus time presented in Figure 2 in Appendix D depicts this initial static weight and shows approximately zero load on the pile after the load test. Additional plots of test measurements are included in the Appendix D consisting of: the pile top average acceleration versus time, integrated velocity at the pile top versus time, and pile top displacement versus time.

SUMMARY AND CONCLUSIONS

The load test program included the installation of a 110-feet long, 30-inch square prestressed concrete pile at location TP-23C. TP-23C was subjected to dynamic pile testing during initial drive and 1 and 16 day restrikes and axial Statnamic load testing 15 days after initial drive. A summary of the load test results is provided below:

TP-23C Load Testing Summary:

- The signal matching analysis of the dynamic testing data for TP-23C indicated a total ultimate resistance of 440 kips at end of initial drive, 750 kips for the 1 day restrike, and 770 kips for the 16 day restrike (1 days after axial Statnamic rapid load testing).
- TP-23C was subjected to axial Statnamic load testing 15 days after initial drive with a maximum derived static load of 1,060 kips with a maximum displacement of 2.55 inches and a permanent displacement of 2.55 inches.
- The failure load during axial Statnamic load testing based on the Davisson Failure Criterion was approximately 1,055 kips. The pile top displacement at the failure load was approximately 0.80 inch.

The purpose of this test pile program is to determine the pile bearing resistances (ultimate, side resistance, and end bearing) achievable for the pile type, size, and lengths installed. In addition, the designers may choose to use the results to optimize their foundation design and/or to minimize the risk of constructability issues. However, the design team would also need to consider the scope of the test pile program, the methods used for pile installation, and potential variability of soils along the bridge length when using the information gathered.

Some points to consider from the test pile program for the 110-feet long, 30-inch square prestressed concrete pile at location TP-23C are as follows:

- The dynamic pile testing results indicated lower ultimate total resistances than measured during the axial Statnamic load test at TP-23C. Additionally, attempting to utilize higher resistances similar to those measured during axial Statnamic load testing in the dynamic test data signal matching analysis yielded poor match qualities so this approach was not utilized. The dynamic testing analyses included in this report are based on typical methods which produce good match qualities, and do not represent an attempt to match the axial Statnamic load test results. During production phase dynamic pile testing it may not be possible to verify the higher resistances achieved in this axial Statnamic load test. Additionally, during production phase testing when keeping driving stress values below allowable limits during initial drives and restrikes is of the upmost importance, due to possibly lower transfer energies, less resistance may be mobilized than shown in this report.
- Dynamic pile testing on production piles is recommended to determine bearing resistances, measure pile driving stresses, and determine hammer driving system suitability. Driving criteria may be developed based on this testing with recommendations provided to control tensile and compressive stresses at or below allowable levels.
- Signal matching analyses of the production pile dynamic test data is recommended to confirm and/or to provide a better estimate of the ultimate pile bearing resistance.

Below is a summary of the Appendix contents:

- Appendix A Inspector's Pile Driving Records
- Appendix B Dynamic Pile Testing Data Summaries
- Appendix C CAPWAP Signal Matching Analysis Output
- Appendix D Axial Compressive Statnamic Rapid Load Testing Graphical Results
 - Figure 1 Derived Static Load versus Displacement Response from Statnamic Load Testing with Davisson Failure Criterion
 - Figure 2 Applied Statnamic Load versus Elapsed Time
 - Figure 3 Pile Top Acceleration and Velocity versus Elapsed Time
 - Figure 4 Pile Top Displacement versus Elapsed Time
- Appendix E Relevant Project Documents
- Appendix F Instrument Calibrations

CLOSURE

We want to thank you for the opportunity to be involved in this project. We also want to thank you for all your support in setting up the test. Please do not hesitate to call us if you have any questions regarding the information in this report.

LIMITATIONS

This report presents test measurements made by Applied Foundation Testing, Inc. Interpretations were made based upon the measurements made by AFT with the latest techniques available and currently accepted standards of care recognized by Geotechnical Engineering professionals. Applied Foundation Testing is an independent agency and is not the Geotechnical Engineer of Record. The Geotechnical Engineer of Record should ultimately make final recommendations for foundation design and construction.

Appendix A

Inspector's Pile Driving Records TP-23C

I-10 over Mobile River Bridge Load Test Program ALDOT Project No.: IM-I010(341)

DOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

FORM C-15A ALABA	DEPAR	TMENT OF TRA	NSPO	RTATI	ON		
REVISED 08-07-95		PILE RECORE					
Project Number		County		ID	ivision		
IM-I010(341)		Mobile			Southwest Region		
Bridge: Station	to Station		Bridge Id	entification	Number		
630+43	E	330+43					
Road Between	and			Lane (if a	pplicable))	
I-10		I-10				WB	
Contractor		Inspector					
Jordan Pile Driving				Donald	Hector		
Date Bent No.& Lane		Pile No.		Kind of Sc	pil		
4/25/2018 TEST I	PILE	TP-23C		8	Soft, W	et, Black, Fat Clay	
Kind of Pile	Size of Pile			Total Leng	gth (ft)		
Square Concrete Pile		30"				110	
Elev. Ground Line at Pile	Final Elev. At Top			Tip Elevat	ion		
-13.1	12.4					-97.0	
Hammer Make				Hammer H	Kind		
Delmag		D62-22				Diesel	
Hammer Type	Hammer Action			Rated Ene		-	
Open		Single			165,00	00 @ 11.3 Stroke	
Weight of Hammer (lbs.)		Design Load (from pla	ns) (tons)				
13,700	······				750		
Hammer Cushion: Material	, Thickness (in.)			Area (sq. in.)			
Aluminum and Micarta Alternatir			. 	381			
Pile Cushion (Before Driving): Material	Thickness	(in.)		Area (sq. in.)			
Plywood	10			900			
Pile Cushion (After Driving): Material	Thickness ((in.)		Area (sq. in.)			
Plywood							
Pile Cap Weight (lbs.)							
10,000							
Height Of Fail Energy Delivered To (feet) (fJos.)		lows Per Foot Of Penetration (N)	101	al Penetrat	ion	Bearing (Ru)	
11905/		r eneu audir (N)		(feet)		(tons)	
5.04 69,048		10		52			
5.46 74,802		10		53			
5.35 73,295		8		54			
5.29 72,473		6	[55			

REMARKS

1. When using open type and gravity hammers, record weight of hammer and height of fall of hammer. Show rated energy when using closed type hammers.

2. Energy delivered to pile should be maintained practically constant once record keeping has begun unless specified otherwise by the Engineer.

- 3. Pile cushion is only required with concrete piling.
- 4. Pile cushion thickness after driving must be at least one-half the original thickness.

5. The bearing should be determined from the graph of Blows/Foot versus Bearing which is provided from the Wave Equation Analysis or Dynamic Formula of the driving system. If a graph is not provided, refer to Item 505.03(b)2 of the specifications to estimate the bearing capacity using the Dynamic Formula.

- 6. Driving should be continuous. Note any interruptions exceeding one hour.
- 7. Draw a sketch on back of this sheet showing location of test pile.
- 8. For continuation of test pile record, use Form C-15C-2.
- Test pile (check one): Static Load Tested _____ Dynamic Load Test be attached to this report).

(If static load tested, load test report shall Approved

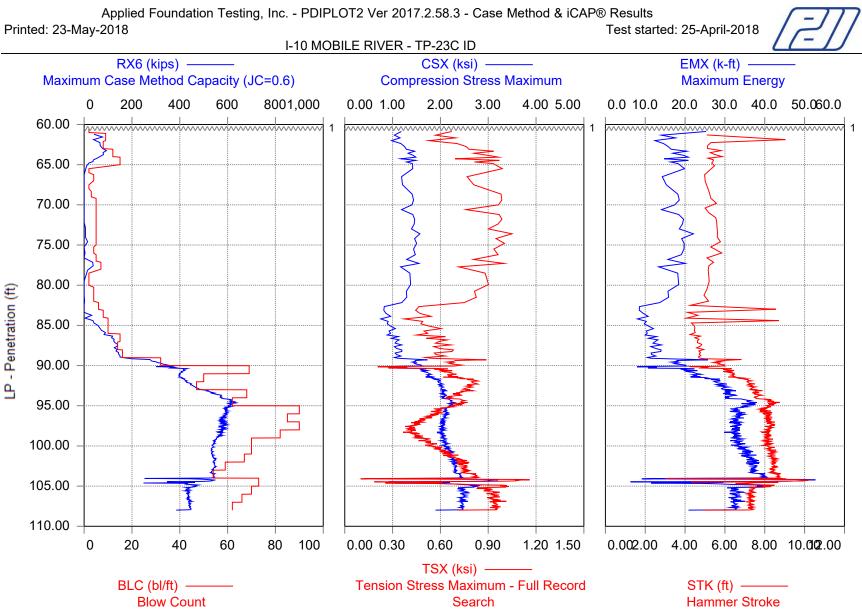
Correct

Project Manager

Area Operations Engineer

Sheet No. 1 of 3

FORM C-15A-2		PARTMENT OF TR		
REVISED 08-07-95 Project Number	CONTINU	ATION OF TEST PIL	E RECORL	
	IM-I010(341)	Mot	pile	Southwest Region
Bridge: Station 630		630+43	Bridge Identification Numbe	r N/A
Date 4/25/2018	Bent No.& Lane TEST PILE	Pile No. TP-230		/et, Black, Fat Clay
Height Of Fall (leet)	Energy Delivered To Pile (E) (ft.dbs.)	Blows Per Foot Of Penetration (N)	Total Penetration (feet)	Bearing (Ru) (tons)
5.21	71,377	5	56	
4.87	66,719	5	57	
5.50	75,350	3	58	
4.99	68,363	5	59	
5.40	73,980	5	60	
5.51	75,487	6	61	
5.59	76,583	5	62	
5.59	76,583	4	63	
5.47	74,939	5	64	
5.13	70,281	5	65	
5.46	74,802	4	66	
4.94	67,678	4	67	
5.13	70,281	3	68	
4.97	68,089	4	69	
5.09	69,733	4	70 ·	
4.32	59,184	6	71	
4.20	57,540	9	72	
4.23	57,951	12	73	
4.41	60,417	10	74	
4.51	61,787	14	75	
4.66	63,842 ·	14	76	
4.67	63,979	17	77	


FORM C-15A-2	ALABA	PARTMENT OF TRA	NSPORT/ ON			
REVISED 08-07-95	CONTINUA	ATION OF TEST PILE	ERECORD			
Project Number	IM-I010(341)	County Mobi	Division	Southwest Region		
Bridge: Station 6304	to Statior +43	630+43	Bridge Identification Number			
Date 4/25/2018	Bent No.& Lane TEST PILE	Pile No. TP-23C	Kind of Soil Soft. 1	Wet, Black, Fat Clay		
Height Of Fall (feet)	Energy Delivered To Pile (E) (ft-tbs.)	Blows Per Foot Of Penetration (N)	Total Penetration (feet)	Bearing (Ru) (tons)		
5.62	76,994 .	32	78			
5.31	72,747	35	79			
6.16	84,392	35	80			
6.67	91,379	49	81			
7.19	98,503	47	82			
7.48	102,476	66	83			
8.07	110,559	64	84			
7.91	108,367	89	85			
8.04	110,148	86	86			
8.17	111,929	90	87			
8.02	109,874	81	88			
8.05	110,285	69	89			
8.19	112,203	71	90			
8.30	113,710	66	91			
8.30	113,710	62	92			
8.46	115,902	53	93			
8.46	115,902	53	94	·····		
7.24	99,188	54	95	**** *********************************		
7.20	98,640	70	96			
7.20	98,640	59	97			

Appendix B Dynamic Pile Testing Data Summaries TP-23C

I-10 over Mobile River Bridge Load Test Program

ALDOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

1 - Template (Reference) El. = 11.25', Mudline El. = -13.1'

Page 1 PDIPLOT2 2017.2.58.3 - Printed 23-May-2018

OP: A AR: LE: WS: 1 RX6: RX7: RA2: CSX:	LE:105.00 ftEM: 6,620.57 ksiWS: 14,300.0 f/sJC:0.60RX6:Maximum Case Method Capacity (JC=0.6)TSX: Tension Stress Maximum - Full Record SearchRX7:Maximum Case Method Capacity (JC=0.7)EMX: Maximum EnergyRA2:Auto Capacity Friction PilesSTK: Hammer StrokeCSX:Compression Stress MaximumBTA: Integrity Factor (1)CSB:Compression Stress at Bottom of PileIntegrity Factor (1)											
BL#	Depth	BLC	TYPE	RX6	RX7	RA2	CSX	CSB	TSX	EMX	STK	BTA
	ft	bl/ft		kips	kips	kips	ksi	ksi	ksi	k-ft	ft	(%)
2	61.00	2	AV2 STD MAX MIN	0 0 0 0	0 0 0 0	0 0 0 0	1.28 0.01 1.29 1.26	0.13 0.02 0.15 0.10	0.73 0.19 0.92 0.53	32.7 9.9 42.6 22.8	8.19 0.00 8.19 8.19	86 2 87 84
11	62.00	9	AV9	52	48	83	1.03	0.23	0.58	14.0	6.83	98
	02.00	Ũ	STD	38	40	19	0.24	0.05	0.20	6.6	5.64	5
			MAX	140	140	123	1.60	0.35	1.01	31.7	17.78	100
			MIN	0	0	60	0.73	0.17	0.33	8.1	1.50	88
19	63.00	8	AV8	68	65	76	1.21	0.25	0.73	15.3	5.18	96
19	03.00	0	STD	10	12	70	0.11	0.23	0.10	1.8	0.30	90 5
			MAX	82	82	87	1.37	0.28	0.89	17.8	5.71	100
			MIN	51	46	66	1.05	0.23	0.59	12.9	4.82	88
		10										
31	64.00	12	AV12	81	80	89	1.41	0.30	0.88	19.1	5.57	90
			STD	12	14	6	0.10	0.02	0.09	2.6	0.35	4
			MAX MIN	97 49	96 41	100 80	1.59 1.21	0.33 0.27	1.05 0.71	23.9 15.2	6.25 5.08	100 88
				49	41	00	1.21	0.27	0.71	13.2	5.00	00
46	65.00	15	AV15	37	31	68	1.36	0.28	0.87	17.9	5.37	91
			STD	20	22	12	0.13	0.02	0.12	2.3	0.31	4
			MAX	79	79	90	1.53	0.30	1.02	21.5	5.88	100
			MIN	10	2	52	1.09	0.25	0.62	13.4	4.78	88
48	66.00	2	AV2	0	0	0	1.40	0.16	0.99	20.3	5.41	85
			STD	0	0	0	0.01	0.01	0.00	0.9	0.03	0
			MAX	0	0	0	1.42	0.17	0.99	21.1	5.45	85
			MIN	0	0	0	1.39	0.15	0.99	19.4	5.38	85
52	67.00	4	AV4	0	0	0	1.22	0.19	0.80	14.6	4.95	88
			STD	0	0	0	0.10	0.01	0.10	1.3	0.19	1
			MAX	0	0	0	1.31	0.20	0.89	15.8	5.16	89
			MIN	0	0	0	1.07	0.17	0.66	12.5	4.68	87
54	68.00	2	AV2	0	0	0	1.16	0.12	0.77	15.2	4.78	85
			STD	0	0	0	0.01	0.01	0.00	1.1	0.00	2
			MAX	0	0	0	1.17	0.12	0.77	16.3	4.78	86
			MIN	0	0	0	1.15	0.11	0.77	14.1	4.78	83
57	69.00	3	AV3	0	0	0	1.41	0.19	0.98	18.2	5.38	87
			STD	0	0	0	0.03	0.00	0.03	0.6	0.05	0
			MAX	0	0	0	1.44	0.19	1.01	18.9	5.42	87
			MIN	0	0	0	1.37	0.18	0.95	17.5	5.31	87

Page 2 PDIPLOT2 2017.2.58.3 - Printed 23-May-2018

I-10 M OP: Al	OBILE RI FT	VER - T	P-23C ID	1							SC, 110' I : 25-Apri	
BL# 62	Depth ft 70.00	BLC bl/ft 5	TYPE AV5 STD MAX MIN	RX6 kips 0 0 0 0	RX7 kips 0 0 0 0	RA2 kips 40 9 56 29	CSX ksi 1.44 0.06 1.53 1.34	CSB ksi 0.23 0.01 0.24 0.22	TSX ksi 0.99 0.05 1.07 0.90	EMX k-ft 18.4 1.3 20.5 16.6	STK ft 5.46 0.19 5.71 5.14	BTA (%) 88 0 89 88
67	71.00	5	AV5 STD MAX MIN	0 0 0 0	0 0 0 0	12 9 23 0	1.26 0.11 1.43 1.13	0.21 0.01 0.23 0.19	0.83 0.10 0.98 0.71	15.2 1.6 17.8 12.9	5.08 0.27 5.51 4.76	90 5 100 87
72	72.00	5	AV5 STD MAX MIN	0 0 0 0	0 0 0 0	10 6 18 0	1.45 0.07 1.54 1.35	0.26 0.02 0.30 0.24	0.98 0.07 1.06 0.89	19.3 1.2 21.2 17.6	5.55 0.24 5.91 5.22	89 0 89 88
77	73.00	5	AV5 STD MAX MIN	3 6 15 0	1 3 7 0	13 19 48 0	1.44 0.11 1.59 1.27	0.27 0.02 0.31 0.25	0.95 0.10 1.09 0.79	19.1 2.0 21.8 15.9	5.53 0.34 6.09 5.05	89 0 89 88
82	74.00	5	AV5 STD MAX MIN	6 8 17 0	3 4 8 0	37 22 56 4	1.50 0.10 1.60 1.33	0.30 0.02 0.33 0.27	0.98 0.09 1.08 0.83	20.6 1.9 22.8 18.0	5.67 0.33 6.04 5.12	90 0 90 89
87	75.00	5	AV5 STD MAX MIN	9 8 19 0	4 5 11 0	36 17 53 11	1.49 0.07 1.57 1.39	0.30 0.01 0.31 0.28	0.98 0.07 1.05 0.89	19.6 1.6 21.8 17.2	5.61 0.22 5.86 5.33	90 0 90 89
91	76.00	4	AV4 STD MAX MIN	0 0 0 0	0 0 0 0	9 10 26 0	1.49 0.15 1.63 1.24	0.29 0.03 0.31 0.23	0.97 0.12 1.09 0.77	20.5 2.7 22.8 16.1	5.62 0.42 6.09 4.97	89 0 89 88
96	77.00	5	AV5 STD MAX MIN	2 4 11 0	0 1 1 0	18 11 37 1	1.34 0.09 1.46 1.18	0.29 0.03 0.32 0.25	0.84 0.07 0.94 0.72	16.3 1.3 18.4 14.3	5.21 0.23 5.59 4.85	89 0 89 89
103	78.00	7	AV7 STD MAX MIN	38 34 101 0	34 35 100 0	43 5 49 35	1.36 0.19 1.61 1.08	0.31 0.06 0.38 0.20	0.86 0.14 1.06 0.64	16.8 3.2 20.7 12.4	5.26 0.43 5.93 4.63	94 5 100 89
105	79.00	2	AV2 STD MAX MIN	0 0 0 0	0 0 0 0	0 0 0 0	1.35 0.07 1.42 1.28	0.23 0.03 0.26 0.20	0.88 0.06 0.94 0.82	18.6 0.7 19.3 17.9	5.17 0.18 5.35 4.99	86 1 86 85
107	80.00	2	AV2 STD MAX	0 0 0	0 0 0	0 0 0	1.41 0.04 1.45	0.25 0.01 0.27	0.94 0.03 0.97	19.6 0.7 20.3	5.32 0.10 5.42	87 1 87

I-10 M OP: A	OBILE RI	IVER - T	P-23C IE)							SC, 110' I : 25-April	
BL#	Depth ft	BLC bl/ft	TYPE MIN	RX6 kips 0	RX7 kips 0	RA2 kips 0	CSX ksi 1.37	CSB ksi 0.24	TSX ksi 0.91	EMX k-ft 18.9	STK ft 5.22	BTA (%) 86
111	81.00	4	AV4 STD MAX MIN	0 0 0 0	0 0 0 0	15 6 23 6	1.30 0.05 1.37 1.23	0.27 0.02 0.30 0.25	0.82 0.04 0.88 0.76	15.8 0.7 16.7 15.0	5.04 0.12 5.20 4.87	88 0 89 88
115	82.00	4	AV4 STD MAX MIN	1 3 6 0	0 0 0 0	14 5 20 6	1.34 0.10 1.46 1.18	0.28 0.04 0.32 0.22	0.86 0.08 0.96 0.73	16.4 1.3 18.0 14.5	5.17 0.23 5.45 4.82	88 1 90 87
121	83.00	6	AV6 STD MAX MIN	0 0 0 0	0 0 0 0	8 11 26 0	0.92 0.12 1.16 0.80	0.16 0.04 0.24 0.12	0.53 0.09 0.71 0.44	9.7 1.6 12.7 7.8	4.38 0.22 4.83 4.19	96 6 100 88
129	84.00	8	AV8 STD MAX MIN	12 18 43 0	9 16 38 0	21 20 63 0	0.88 0.16 1.15 0.68	0.18 0.04 0.25 0.14	0.48 0.12 0.68 0.32	9.6 2.1 13.6 7.4	5.92 4.21 17.03 3.99	97 5 100 88
139	85.00	10	AV10 STD MAX MIN	35 23 68 3	29 24 66 0	54 20 69 20	0.86 0.09 0.98 0.73	0.19 0.02 0.22 0.16	0.46 0.07 0.55 0.36	9.5 1.1 11.2 7.4	5.61 3.89 17.28 4.09	97 5 100 88
149	86.00	10	AV10 STD MAX MIN	74 17 98 50	71 20 98 43	60 3 65 56	0.98 0.07 1.11 0.88	0.23 0.02 0.26 0.20	0.55 0.06 0.65 0.46	11.1 0.9 12.6 9.8	4.49 0.13 4.72 4.28	97 5 100 89
164	87.00	15	AV15 STD MAX MIN	113 18 140 77	113 19 140 74	93 14 109 66	1.02 0.12 1.30 0.80	0.26 0.03 0.35 0.21	0.55 0.10 0.77 0.39	11.6 1.7 15.2 8.7	4.57 0.24 5.16 4.19	94 5 100 88
178	88.00	14	AV14 STD MAX MIN	134 9 147 118	134 9 147 117	101 7 112 84	1.11 0.09 1.25 0.94	0.30 0.03 0.34 0.25	0.61 0.07 0.72 0.48	12.7 1.4 14.8 10.2	4.73 0.18 4.99 4.43	94 5 100 90
194	89.00	16	AV16 STD MAX MIN	144 7 155 127	144 7 155 127	106 12 134 86	1.12 0.09 1.33 1.02	0.33 0.03 0.38 0.27	0.61 0.07 0.77 0.52	12.3 1.5 15.4 10.2	4.75 0.18 5.18 4.57	98 4 100 90
226	90.00	32	AV32 STD MAX MIN	286 54 357 173	285 55 357 167	256 49 324 152	1.46 0.20 1.75 1.00	0.62 0.10 0.73 0.38	0.68 0.11 0.92 0.46	18.0 4.1 28.3 10.2	5.69 0.62 7.42 4.47	100 0 100 100
295	91.00	69	AV69	394	394	340	1.52	0.78	0.55	18.5	5.83	100

30" PSC, 110' LONG

I-10 MOBILE RIVER - TP-23C ID OP: AFT

OP: A	TUDILE RI		P-230 ID								: 25-Apri	
BL#	Depth ft	BLC bl/ft	TYPE STD MAX MIN	RX6 kips 31 433 286	RX7 kips 31 433 286	RA2 kips 25 369 247	CSX ksi 0.28 1.85 0.68	CSB ksi 0.10 0.91 0.47	TSX ksi 0.16 0.78 0.16	EMX k-ft 5.0 26.8 5.4	STK ft 0.68 7.14 4.05	BTA (%) 0 100 100
345	92.00	50	AV50 STD MAX MIN	410 12 433 391	409 12 433 390	378 13 406 359	1.85 0.11 2.02 1.56	0.92 0.04 0.97 0.82	0.73 0.07 0.85 0.52	25.1 2.7 29.4 18.9	6.75 0.40 7.35 5.80	100 0 100 100
392	93.00	47	AV47 STD MAX MIN	456 17 492 426	456 17 492 426	445 24 483 400	2.01 0.04 2.11 1.91	1.02 0.04 1.10 0.94	0.79 0.03 0.86 0.72	29.2 1.3 32.0 26.2	7.31 0.18 7.68 6.88	100 0 100 100
460	94.00	68	AV68 STD MAX MIN	546 25 586 495	545 24 585 495	525 19 556 485	2.07 0.04 2.17 1.98	1.17 0.04 1.25 1.09	0.71 0.05 0.84 0.60	31.0 1.3 34.1 28.4	7.58 0.20 8.07 7.25	100 0 100 100
522	95.00	62	AV62 STD MAX MIN	609 16 637 569	608 16 637 566	576 12 598 546	2.20 0.07 2.33 2.02	1.32 0.04 1.38 1.22	0.72 0.04 0.80 0.63	35.2 2.4 39.4 29.6	8.19 0.35 8.89 7.35	100 0 100 100
612	96.00	90	AV90 STD MAX MIN	596 8 618 580	595 8 615 580	601 8 621 584	2.13 0.05 2.24 2.02	1.36 0.02 1.40 1.33	0.60 0.05 0.70 0.51	33.4 1.6 36.6 30.0	8.02 0.22 8.53 7.49	100 0 100 100
697	97.00	85	AV85 STD MAX MIN	582 11 605 559	579 13 604 552	579 14 613 550	2.08 0.05 2.20 1.96	1.36 0.02 1.40 1.32	0.51 0.05 0.63 0.40	33.1 1.4 36.6 29.9	8.16 0.21 8.66 7.64	100 0 100 100
787	98.00	90	AV90 STD MAX MIN	581 10 604 558	569 12 597 544	550 14 578 518	2.05 0.04 2.14 1.94	1.34 0.02 1.38 1.30	0.43 0.03 0.52 0.35	32.9 1.1 35.2 30.3	8.28 0.19 8.70 7.79	100 0 100 100
869	99.00	82	AV82 STD MAX MIN	569 10 588 545	548 9 566 530	517 8 537 501	2.03 0.05 2.13 1.90	1.32 0.02 1.35 1.27	0.44 0.03 0.52 0.35	32.5 1.2 35.1 29.1	8.12 0.19 8.53 7.64	100 0 100 100
939	100.00	70	AV70 STD MAX MIN	545 6 561 533	525 6 542 512	494 6 512 483	2.09 0.05 2.19 1.98	1.29 0.02 1.33 1.24	0.52 0.04 0.61 0.41	33.3 1.3 36.2 30.3	8.15 0.19 8.61 7.64	100 0 100 100
1009	101.00	70	AV70 STD MAX MIN	535 4 549 528	526 5 538 512	497 9 518 478	2.17 0.05 2.28 2.05	1.32 0.02 1.36 1.27	0.60 0.04 0.70 0.52	34.9 1.4 37.7 31.7	8.30 0.19 8.66 7.83	100 0 100 100

I-10 MOBILE RIVER - TP-23C ID OP. AFT

30" PSC, 110' LONG Date: 25-April-2018

OP: A	FT									Date	e: 25-Apri	I-2018
BL#	Depth ft	BLC bl/ft	TYPE	RX6 kips	RX7 kips	RA2 kips	CSX ksi	CSB ksi	TSX ksi	EMX k-ft	STK ft	BTA (%)
1076	102.00	67	AV67 STD MAX MIN	542 5 555 532	538 7 550 522	505 10 527 485	2.24 0.05 2.35 2.11	1.35 0.02 1.39 1.32	0.70 0.04 0.77 0.60	36.3 1.4 38.9 33.1	8.41 0.18 8.70 8.03	100 0 100 100
1135	103.00	59	AV59 STD MAX MIN	544 5 553 534	534 7 548 518	478 10 497 454	2.31 0.04 2.40 2.19	1.36 0.01 1.39 1.33	0.75 0.03 0.81 0.67	37.2 1.1 39.6 34.1	8.44 0.15 8.79 8.07	100 0 100 100
1189	104.00	54	AV54 STD MAX MIN	539 6 552 524	517 6 536 505	454 7 468 436	2.38 0.07 2.52 2.25	1.37 0.02 1.43 1.34	0.79 0.04 0.89 0.70	38.6 1.7 42.7 34.9	8.56 0.21 9.12 8.11	100 0 100 100
1262	105.00	73	AV73 STD MAX MIN	451 96 561 0	438 94 539 0	444 87 529 0	2.31 0.77 3.38 0.00	1.48 0.39 2.02 0.00	0.72 0.36 1.25 0.01	32.4 15.0 56.0 0.0	7.97 2.44 17.52 1.53	98 10 100 24
1332	106.00	70	AV70 STD MAX MIN	438 12 470 418	436 12 469 417	404 12 440 382	2.51 0.12 2.88 2.33	1.48 0.06 1.68 1.39	0.92 0.07 1.11 0.80	33.4 2.6 41.8 29.6	7.45 0.32 8.48 7.01	100 0 100 100
1398	107.00	66	AV66 STD MAX MIN	437 6 456 425	436 6 455 425	384 8 402 360	2.47 0.07 2.62 2.29	1.42 0.03 1.48 1.36	0.94 0.04 1.06 0.84	32.6 1.3 35.9 29.7	7.30 0.14 7.68 7.01	100 0 100 100
1460	108.00	62	AV62 STD MAX MIN	440 17 454 327	439 16 453 327	381 8 395 339	2.44 0.15 2.53 1.35	1.39 0.06 1.44 0.96	0.94 0.08 1.03 0.39	32.1 2.8 34.2 11.7	7.26 0.32 7.49 4.91	100 0 100 100
		St Ma	verage d. Dev. aximum inimum	451 175 637 0 Total n	445 172 637 0 umber of	421 165 621 0 f blows a	2.01 0.45 3.38 0.00 nalyzed:	1.14 0.41 2.02 0.00 1460	0.68 0.19 1.25 0.01	29.8 8.4 56.0 0.0	7.43 1.38 17.78 1.50	99 4 100 24

BL# Sensors

1-1460 F3: [P454] 145.3 (1.00); F4: [P455] 145.8 (1.00); A3: [K5647] 334.0 (1.00); A4: [K5943] 368.0 (1.00)

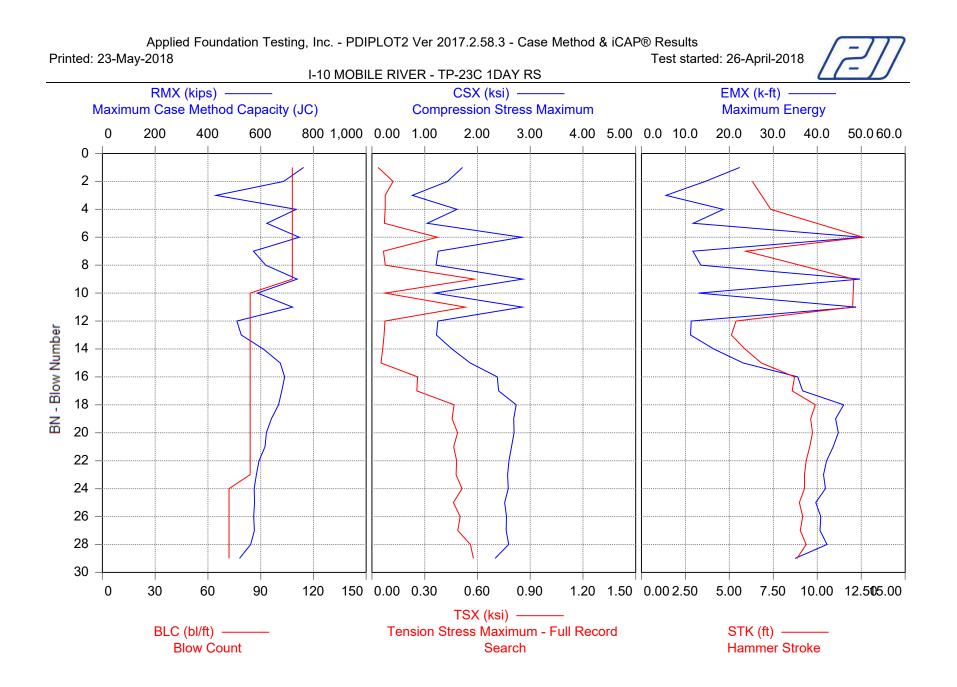
BL# Comments

- 1 Template (Reference) El. = 11.25', Mudline El. = -13.1' 1191 Stop to Remove Template Pile Pocket

Page 5

Page 6 PDIPLOT2 2017.2.58.3 - Printed 23-May-2018

I-10 MOBILE RIVER - TP-23C ID OP: AFT 30" PSC, 110' LONG Date: 25-April-2018


Time Summary

 Drive
 30 minutes
 46 seconds
 12:55 PM - 1:26 PM (4/25/2018) BN 1 - 1191

 Stop
 36 minutes
 58 seconds
 1:26 PM - 2:03 PM

 Drive
 9 minutes
 32 seconds
 2:03 PM - 2:12 PM BN 1192 - 1460

Total time [01:17:17] = (Driving [00:40:19] + Stop [00:36:58])

Applied Foundation Testing, Inc.
Case Method & iCAP® Results

PDIPLOT2 2017.2.58.3 - Printed 23-May-2018

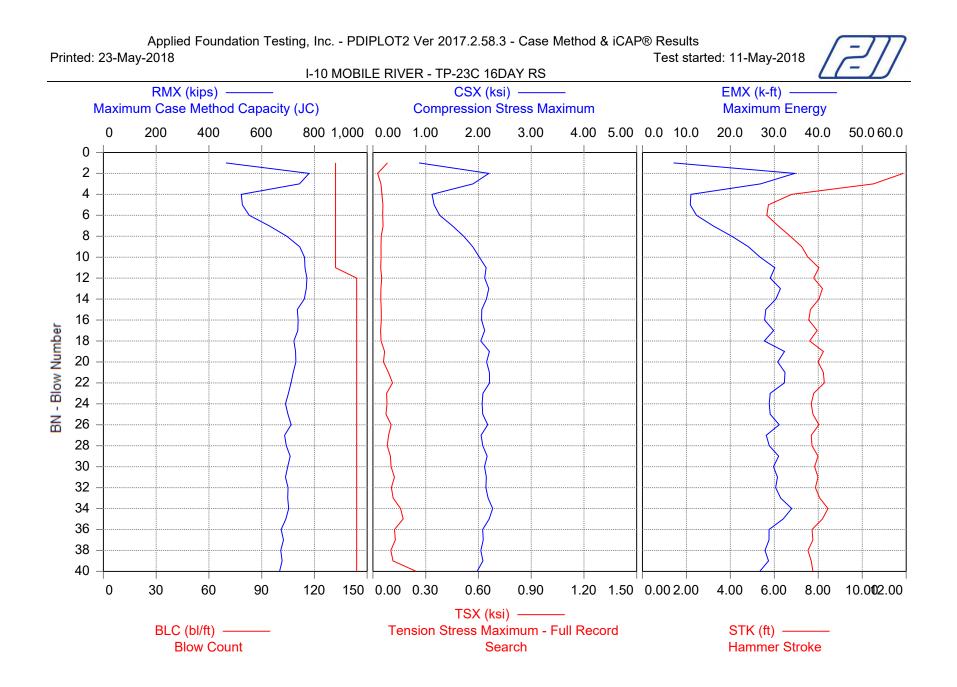
I_10 M	MOBILE RIV	ER - TP-23		2				30"	PSC, 110'	
OP: A		LIX - 17 -23		.0					ate: 26-Apr	
AR:	686.18 in ²									50 k/ft ³
LE:	105.00 ft								EM: 6,620.	.57 ksi
WS:	14,300.0 f/s								JC: 0.	.58
RMX	: Maximum (Case Metho	od Capacit	y (JC)	TSX:	Tension S	tress Maxi	mum - Fu	II Record S	Search
	Maximum (y (JC=0.6)	EMX:	Maximum	Energy			
	Auto Capa					Hammer S				
	Compressi				BTA:	Integrity F	actor (1)			
	Compressi							=	0.71/	
BL#	BLC	RMX	RX6	RA2	CSX	CSB	TSX	EMX	STK	BTA
1	bl/ft	kips 763	kips 744	kips	ksi	ksi 1.59	ksi	k-ft 22.3	ft	(%)
1 2	108 108	763 687	744 672	597 544	1.72 1.43	1.59	0.03 0.12	22.3 14.5	0.00 6.31	100 100
2	108	431	425	544 465	0.77	0.72	0.12	5.6	0.00	100
4	108	735	717	405 545	1.61	1.63	0.08	18.6	7.35	100
5	108	623	615	643	1.05	1.03	0.07	11.8	0.00	100
6	108	746	732	784	2.84	2.24	0.37	50.3	12.60	100
7	108	573	560	504	1.26	1.25	0.07	11.7	5.93	100
8	108	619	608	584	1.22	1.25	0.08	13.5	0.00	100
9	108	738	721	737	2.86	2.09	0.58	49.7	12.08	100
10	84	588	577	578	1.19	1.19	0.07	13.0	0.00	100
11	84	721	705	742	2.85	2.10	0.53	48.8	12.01	100
12	84	510	497	497	1.25	1.18	0.07	11.3	5.38	89
13	84	526	515	506	1.22	1.18	0.07	11.2	5.12	100
14	84	609	594	538	1.52	1.42	0.06	16.4	5.88	100
15	84	674	661	605	1.86	1.58	0.05	23.1	6.82	100
16	84	691	677	656	2.38	1.82	0.26	35.5	8.70	100
17 18	84 84	680 668	666 654	656 662	2.40 2.73	1.82 1.94	0.25 0.47	36.7 46.0	8.57 9.89	100 100
10	04 84	640	627	635	2.73	1.94	0.47	40.0	9.69 9.62	100
20	84	622	608	635	2.69	1.91	0.40	44.2	9.02 9.73	100
21	84	617	603	649	2.65	1.86	0.46	43.6	9.57	100
22	84	594	581	633	2.60	1.83	0.48	42.1	9.37	100
23	84	584	571	631	2.57	1.81	0.48	41.4	9.27	100
24	72	575	562	624	2.58	1.80	0.51	41.8	9.27	100
25	72	577	564	632	2.51	1.76	0.46	39.7	8.98	100
26	72	574	561	628	2.55	1.77	0.50	40.8	9.17	100
27	72	576	564	641	2.54	1.76	0.49	40.6	9.03	100
28	72	562	554	647	2.59	1.77	0.56	42.2	9.37	100
29	72	520	510	582	2.33	1.64	0.58	34.9	8.84	100
	Average	621	608	613	2.08	1.63	0.30	30.9	8.70	100
	Std. Dev.	78	76	72	0.66	0.35	0.21	14.6	1.98	2
	Maximum	763 431	744 425	784 465	2.86 0.77	2.24 0.72	0.58 0.03	50.3 5.6	12.60 5.12	100 89
	Minimum	431		405 al number d				0.0	J.12	09

Total number of blows analyzed: 29

BL# Sensors

1-29 F3: [P454] 145.3 (1.00); F4: [P455] 145.8 (1.00); A3: [K5647] 334.0 (1.00); A4: [K5943] 368.0 (1.00)

- BL# Comments
- 29 9BL/1", 7BL/1", 7BL/1", 6BL/1"


Page 1

Page 2 PDIPLOT2 2017.2.58.3 - Printed 23-May-2018

I-10 MOBILE RIVER - TP-23C 1DAY RS OP: AFT 30" PSC, 110' LONG Date: 26-April-2018

Time Summary

Drive 3 minutes 48 seconds 11:03 AM - 11:07 AM BN 1 - 29

Applied Foundation Testing, Inc.	
Case Method & iCAP® Results	

Page 1 PDIPLOT2 2017.2.58.3 - Printed 23-May-2018

I-10 M OP: A	IOBILE RIV	'ER - TP-23	BC 16DAY	RS					' PSC, 110' ate: 11-Ma	
<u>AR:</u>	686.18 in ²	2								$\frac{y-2018}{50 \text{ k/ft}^3}$
LE:	105.00 ft								EM: 6,620.	
	14,300.0 f/s	;								.57
	Maximum		od Capacit	y (JC)	TSX:	Tension S	tress Max	imum - Fu	III Record S	Search
	Maximum			y (JC=0.6)		Maximum				
	Auto Capa					Hammer				
	Compressi			f Dile	BIA:	Integrity F	actor (1)			
<u>CSB:</u> BL#	Compressi BLC	RMX	RX6	RA2	CSX	CSB	TSX	EMX	STK	BTA
DL#	bl/ft	kips	kips	kips	ksi	ksi	ksi	⊏ivi⊼ k-ft	ft	ыла (%)
1	132	465	455	601	0.87	0.54	0.08	7.1	0.00	100
2	132	780	739	770	2.20	1.85	0.03	34.6	11.86	87
3	132	743	710	682	1.90	1.66	0.05	26.9	10.51	100
4	132	523	506	550	1.12	1.01	0.05	11.0	6.79	83
5	132	527	509	539	1.16	1.06	0.06	10.9	5.73	87
6	132	553	532	538	1.27	1.16	0.06	12.3	5.66	86
7	132	628	604	583	1.51	1.36	0.06	16.0	6.17	86
8	132	695	667	621	1.72	1.49	0.05	20.3	6.72	100
9 10	132 132	744 763	711 727	638 656	1.89 2.02	1.67 1.76	0.05 0.05	24.1 26.8	7.25 7.53	100 100
11	132	763	730	659	2.02	1.87	0.03	30.1	8.03	100
12	144	772	738	698	2.10	1.85	0.05	29.1	7.79	100
13	144	769	735	701	2.20	1.93	0.05	31.4	8.19	100
14	144	762	728	704	2.15	1.88	0.04	30.3	8.03	100
15	144	735	703	676	2.06	1.77	0.05	28.1	7.64	100
16	144	738	707	695	2.06	1.80	0.05	27.8	7.57	100
17	144	737	704	696	2.12	1.83	0.04	29.8	7.95	100
18	144	722	691	679	2.04	1.78	0.05	27.7	7.60	100
19	144	728	694	689	2.21	1.87	0.07	32.3	8.23	100
20	144	730	696	703	2.15	1.83	0.06	30.8	7.99	100
21 22	144 144	720 711	687 677	680 670	2.21 2.21	1.85 1.84	0.09 0.11	32.4 32.3	8.23 8.27	100 100
22	144	702	670	676	2.21	1.04	0.08	32.3 29.1	0.27 7.79	100
23	144	690	658	657	2.03	1.77	0.08	28.8	7.68	100
25	144	699	668	680	2.08	1.77	0.07	29.1	7.75	100
26	144	712	680	683	2.17	1.81	0.10	31.1	8.03	100
27	144	687	656	665	2.05	1.74	0.09	28.2	7.68	100
28	144	693	662	679	2.08	1.76	0.08	28.8	7.72	100
29	144	708	676	695	2.17	1.80	0.10	31.0	7.99	100
30	144	699	667	676	2.12	1.77	0.10	29.8	7.83	100
31	144	690	658	670	2.15	1.78	0.12	30.7	7.99	100
32 33	144 144	700 699	668 667	686 687	2.14 2.18	1.78 1.80	0.10 0.11	30.3 31.4	7.87 8.07	100 100
33	144	702	670	708	2.10	1.83	0.11	33.9	8.44	100
35	144	692	659	695	2.20	1.78	0.10	32.0	8.19	100
36	144	674	643	655	2.08	1.73	0.12	28.8	7.72	100
37	144	683	652	674	2.09	1.72	0.13	28.8	7.75	100
38	144	672	642	668	2.04	1.72	0.10	27.9	7.53	100
39	144	677	647	664	2.08	1.73	0.11	28.7	7.68	100
40	144	668	636	646	1.97	1.60	0.25	26.7	7.75	100
	Average	694	663	665	1.98	1.68	0.08	27.2	7.82	98
	Std. Dev.	68	63	46	0.33	0.28	0.04	6.5	1.01	5
	Maximum Minimum	780 465	739 455	770 538	2.27 0.87	1.93 0.54	0.25 0.03	34.6 7.1	11.86	100 83
	Minimum	465		al number o				1.1	5.66	00
			101		. 510443	anaryzou. 4				

Applied Foundation Testing, Inc.	
Case Method & iCAP® Results	

I-10 MC OP: AF		ER - TP-23	BC 16DAY	RS					PSC, 110' ate: 11-Ma	
BL#	BLC	RMX	RX6	RA2	CSX	CSB	TSX	EMX	STK	BTA
	bl/ft	kips	kips	kips	ksi	ksi	ksi	k-ft	ft	(%)

BL# Sensors

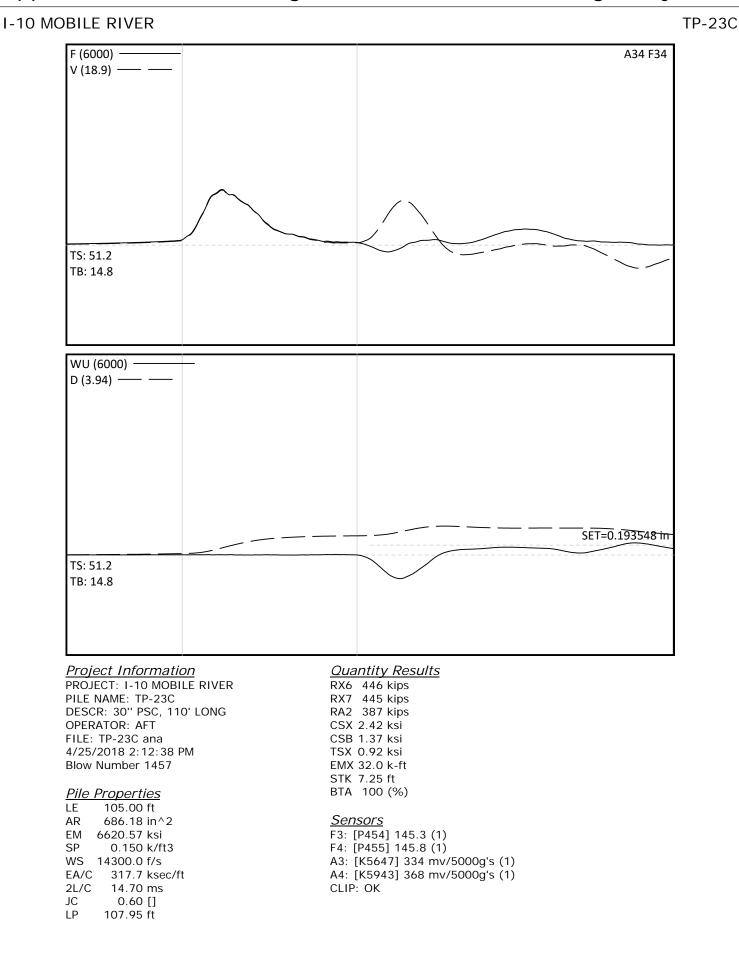
1-40 F3: [P454] 145.3 (1.00); F4: [P455] 145.8 (1.00); A3: [K5647] 334.0 (1.00); A4: [K5943] 368.0 (1.00)

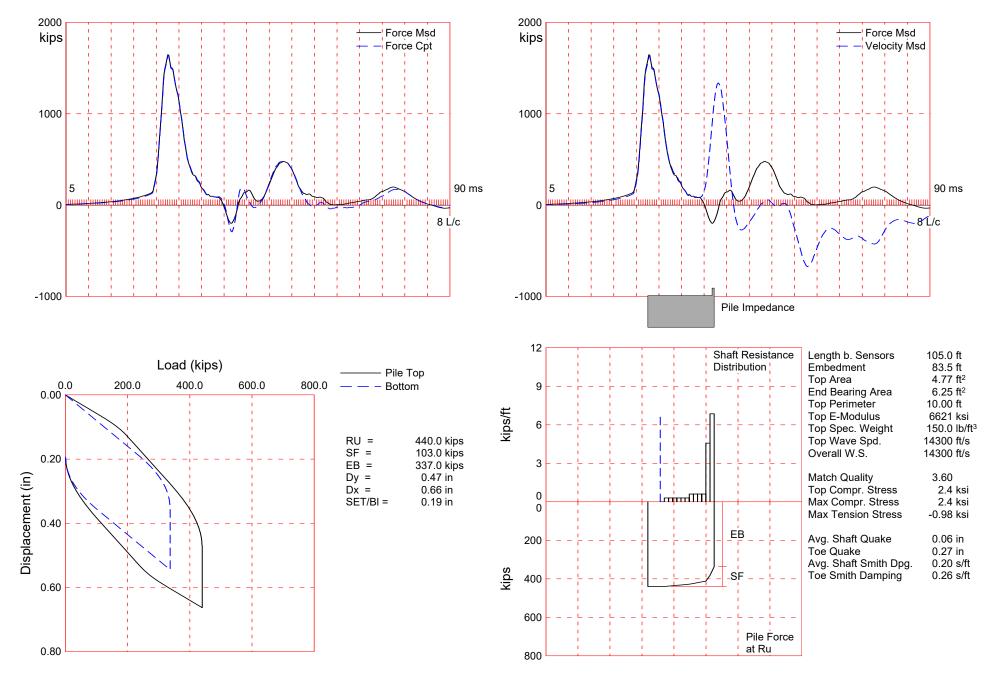
BL# Comments

40 11BL/1", 12BL/1", 12BL/1"

Time Summary

Drive 55 seconds 8:49 AM - 8:49 AM BN 1 - 40




Appendix C CAPWAP Signal Matching Analysis Output TP-23C

I-10 over Mobile River Bridge Load Test Program

ALDOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

Applied Foundation Testing, Inc.

I-10 MOBILE RIVER; Pile: TP-23C	Test: 25-Apr-2018 14:12
30'' PSC, 110' LONG; Blow: 1457	CAPWAP(R) 2014-2
Applied Foundation Testing, Inc.	OP: AFT
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. I-10 MOBILE RIVER; Pile: TP-23C 30'' PSC, 110' LONG; Blow: 1457 Applied Foundation Testing, Inc.

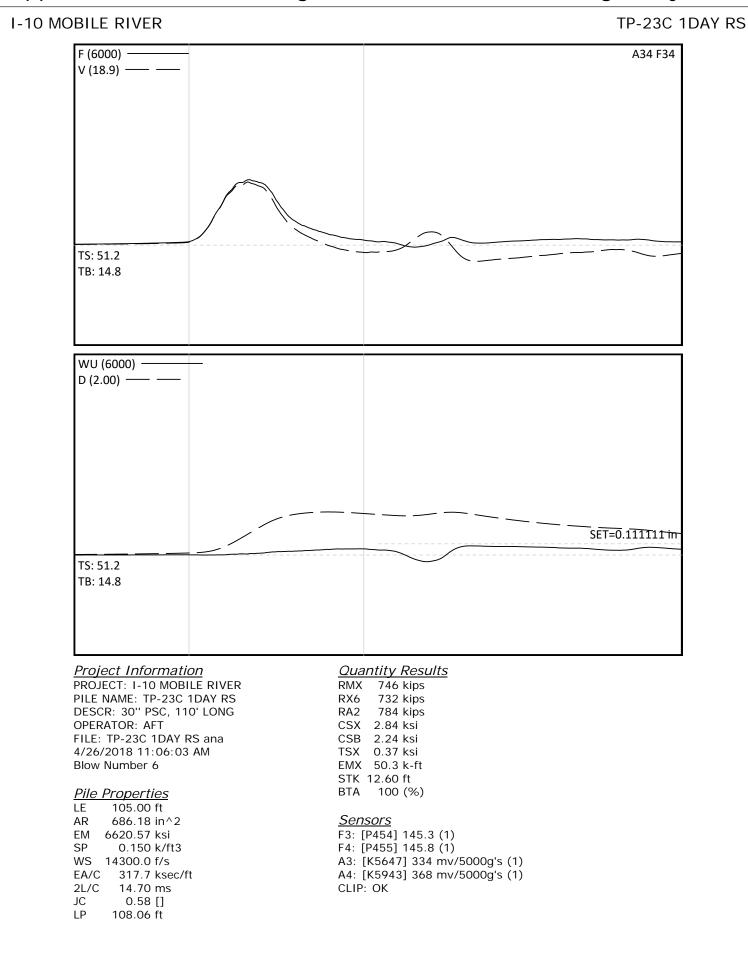
			CAPWA	P SUMMARY	RESULTS				
Total CAPWA	AP Capacity	: 440	.0; along	Shaft	103.0; at	Тое	337.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum	L	Unit	Unit	: Smi
Sgmnt	Below	Below		in Pile	of	Re	esist.	Resist	. Dampi
No.	Gages	Grade			Ru	([epth)	(Area)) Fact
	ft	ft	kips	kips	kips	ki	.ps/ft	ksi	E s/
				440.0					
1	26.3	4.8	0.0	440.0	0.0		0.00	0.00	0.
2	32.8	11.3	2.0	438.0	2.0		0.30	0.03	з о.
3	39.4	17.9	2.0	436.0	4.0		0.30	0.03	з О.
4	45.9	24.4	2.0	434.0	6.0		0.30	0.03	з О.
5	52.5	31.0	2.0	432.0	8.0		0.30	0.03	з о.
6	59.1	37.6	2.0	430.0	10.0		0.30	0.03	з о.
7	65.6	44.1	2.0	428.0	12.0		0.30	0.03	з о.
8	72.2	50.7	4.0	424.0	16.0		0.61	0.06	50.
9	78.8	57.3	4.0	420.0	20.0		0.61	0.06	50.
10	85.3	63.8	4.0	416.0	24.0		0.61	0.06	50.
11	91.9	70.4	4.0	412.0	28.0		0.61	0.06	50.
12	98.4	76.9	30.0	382.0	58.0		4.57	0.46	50.
13	105.0	83.5	45.0	337.0	103.0		6.86	0.69	ο.
Avg. Sha	ft		7.9				1.23	0.12	2 0.
Тое			337.0					53.92	2 0.
Soil Model	Parameters	/Extensi	ons			Shaft	То	e	
Quake		(ir	ı)			0.06	0.2	7	
Case Dampir	ng Factor					0.06	0.2	8	
Damping Typ	þe				Vi	scous	Sm+Vis	C	
Unloading 🤉	Quake	(%	of loadin	ng quake)		30	9	3	
Reloading I	Level	(%	of Ru)			100	10	0	
Unloading I	Level	(%	of Ru)			24			
Soil Plug V	Veight	(ki	ips)				1.00	0	
CAPWAP mate	h quality	=	3.60	(Wa	ve Up Mato	:h);	RSA = 0		
Observed: H	inal Set	=	0.19 ir	n; Blo	w Count	=	62	b/ft	
Computed: E	inal Set	=	0.19 in	n; Blo	w Count	=	62	b/ft	
max. Top Co	mp. Stress	=	2.4 ks	si (1	.= 28.2 ms	, max	= 1.002	x Top)	
max. Comp.	Stress	=	2.4 ks	si (2	a= 32.8 ft	, T=	30.3 ms)	
max. Tens.	Stress	=	-0.98 ks	si (2	i= 19.7 ft	, T=	41.1 ms)	
max. Energy	/ (EMX)	=	32.1 ki	lp-ft; ma	x. Measure	d Top	Displ.	(DMX) =	0.58 in

I-10 MOBILE RIVER; Pile: TP-23C 30'' PSC, 110' LONG; Blow: 1457 Applied Foundation Testing, Inc. Test: 25-Apr-2018 14:12 CAPWAP(R) 2014-2 OP: AFT

	EXTREMA TABLE								
Pile	Pile Dist. max. min.				max.	max.	max.	max.	
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.	
No.	Gages			Stress	Stress	Energy			
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in	
1	3.3	1633.3	-415.0	2.4	-0.60	32.1	5.2	0.58	
2	6.6	1633.5	-517.5	2.4	-0.75	32.1	5.2	0.58	
4	13.1	1633.8	-641.9	2.4	-0.94	32.1	5.1	0.58	
6	19.7	1634.6	-672.0	2.4	-0.98	32.1	5.1	0.58	
8	26.3	1635.5	-667.0	2.4	-0.97	32.0	5.1	0.57	
10	32.8	1636.4	-663.7	2.4	-0.97	32.0	5.1	0.56	
12	39.4	1633.0	-654.8	2.4	-0.95	31.8	5.1	0.55	
14	45.9	1629.4	-627.2	2.4	-0.91	31.5	5.1	0.54	
16	52.5	1625.7	-561.2	2.4	-0.82	31.1	5.1	0.54	
18	59.1	1622.2	-484.1	2.4	-0.71	30.6	5.1	0.53	
20	65.6	1618.7	-417.6	2.4	-0.61	29.9	5.1	0.52	
22	72.2	1614.0	-310.5	2.4	-0.45	29.6	5.1	0.52	
23	75.5	1605.4	-241.3	2.3	-0.35	29.3	5.1	0.51	
24	78.8	1608.1	-126.3	2.3	-0.18	29.3	5.3	0.51	
25	82.0	1593.1	-115.8	2.3	-0.17	29.0	5.8	0.51	
26	85.3	1549.6	-102.9	2.3	-0.15	29.0	6.1	0.51	
27	88.6	1480.5	-85.8	2.2	-0.13	28.7	6.5	0.51	
28	91.9	1369.5	-78.9	2.0	-0.12	28.6	6.8	0.51	
29	95.2	1225.8	-73.6	1.8	-0.11	28.3	7.1	0.51	
30	98.4	1052.5	-68.8	1.5	-0.10	28.3	7.3	0.51	
31	101.7	793.0	-56.6	1.2	-0.08	26.0	7.5	0.51	
32	105.0	912.8	-56.8	1.1	-0.07	22.7	7.4	0.51	
Absolute	32.8			2.4			(T =	30.3 ms)	
	19.7				-0.98		(T =	41.1 ms)	

I-10 MOBILE RIVER; Pile: TP-23C Test: 25-Apr-2018 14:12												
30'' PSC, 110' LONG; Blow: 1457 CAPWAP(R) 2014-2												
Applied	Applied Foundation Testing, Inc. OP: AFT											
	CASE METHOD											
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
RP	962.7	727.4	492.1	256.8	21.4	0.0	0.0	0.0	0.0	0.0		
RX	962.7	727.4	609.2	549.5	495.4	452.4	440.0	439.2	438.4	437.7		
RU	962.7	727.4	492.1	256.8	21.4	0.0	0.0	0.0	0.0	0.0		
RAU = 379.0 (kips); RA2 = 376.3 (kips)												
Current CAPWAP Ru = 440.0 (kips); Corresponding J(RP)= 0.22; J(RX) = 0.60												
VM	IX TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB		
ft/	's ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in		
5.	2 27.76	1647.3	1668.6	1668.6	0.58	0.19	0.19	32.2	1003.9	1248		

PILE PROFILE AND PILE MODEL


	Depth	Area	E-Modulus	Spec. Weight	Perim.	
	ft	ft ²	ksi	lb/ft ³	ft	
	0.0	4.77	6620.6	150.000	10.00	
	102.5	4.77	6620.6	150.000	10.00	
	102.5	6.25	6620.6	150.000	10.00	
	105.0	6.25	6620.6	150.000	10.00	
Toe Area		6.25	ft ²			

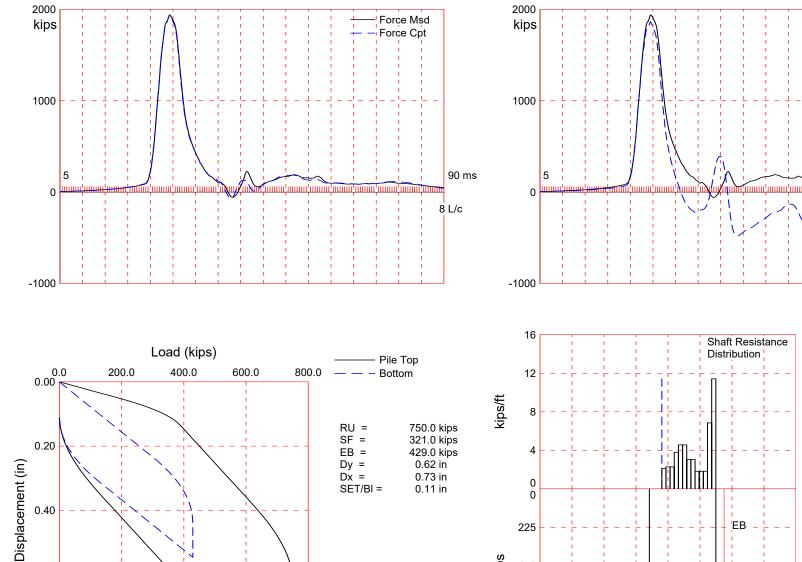
	Segmnt	Dist.	Dist. Impedance		Imped.		Comp	ression	Perim.	Wave
	Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed
		ft	kips/ft/s	%	in		in		ft	ft/s
_	1	3.3	317.69	0.00	0.00	0.000	-0.00	0.000	10.00	14300.0
	32	105.0	392.96	0.00	0.00	0.000	-0.00	0.000	10.00	14300.0

Wave Speed: Pile Top 14300.0, Elastic 14300.0, Overall 14300.0 ft/s Pile Damping 2.00 %, Time Incr 0.229 ms, 2L/c 14.7 ms Total volume: 504.044 ft^{3;} Volume ratio considering added impedance: 1.000

Applied Foundation Testing, Inc.

Pile Driving Analyzer ®

0.60


0.80

Force Msd

Velocity Msd

90 ms

8 L/c

225

675

900

kips 450

се	Length b. Sensors	105.0 ft
	Embedment	83.5 ft
	Top Area	4.77 ft ²
	End Bearing Area	6.25 ft ²
	Top Perimeter	10.00 ft
	Top E-Modulus	6621 ksi
	Top Spec. Weight	150.0 lb/ft3
	Top Wave Spd.	14300 ft/s
	Overall W.S.	14270 ft/s
	-	
	Match Quality	1.68
	Top Compr. Stress	2.8 ksi
	Max Compr. Stress	2.9 ksi
	Max Tension Stress	-0.29 ksi
	Avg. Shaft Quake	0.04 in
	Toe Quake	0.34 in
	Avg. Shaft Smith Dpg.	0.25 s/ft
	Toe Smith Damping	0.33 s/ft

EΒ

SF

Pile Force

at Ru

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. I-10 MOBILE RIVER; Pile: TP-23C 1DAY RS 30'' PSC, 110' LONG; Blow: 6 Applied Foundation Testing, Inc.

				LSULTS	SUMMARY 1					
	kips	429.0	Тое	21.0; at	aft 3	long Sh	50.0;	city:	P Capaci	otal CAPWA
Un	Unit	ı	Sum	orce	F	Ru	epth	t.	Dist.	Soil
Resis	sist.	E Re	of	Pile	in		elow	ow	Below	Sgmnt
(Are	epth)	ı (D	Ru				ade	es	Gages	No.
k	ps/ft	s ki	kips	kips		kips	ft	ft	ft	
				50.0	7					
0.	2.11		10.0	40.0		10.0	4.8		26.3	1
0.	2.29		25.0	25.0		15.0	1.3		32.8	2
0.	2.29		40.0	10.0		15.0	.7.9		39.4	3
0.	3.81		65.0	85.0		25.0	24.4		45.9	4
0.	4.57		95.0	55.0		30.0	31.0		52.5	5
0.	4.57		125.0	25.0		30.0	37.6		59.1	6
0.	3.05		145.0	05.0		20.0	4.1		65.6	7
0.	3.05		165.0	85.0	5	20.0	50.7		72.2	8
0.	1.83		177.0	73.0	5	12.0	57.3		78.8	9
0.	1.83		189.0	61.0		12.0	53.8		85.3	10
0.	1.83		201.0	49.0	5	12.0	0.4		91.9	11
0.	6.86		246.0	04.0		45.0	6.9	.4	98.4	12
1.	11.43)	321.0	29.0	4	75.0	33.5	.0	105.0	13
0.	3.84					24.7			ft	Avg. Sha
68.						429.0			2	Toe
		Toe	Shaft				sions	ters/Ext	Paramete	oil Model
		0.33	0.25					tor	ng Facto	mith Dampi
		0.34	0.04				(in)			uake
		0.45	0.25					or	g Factor	ase Dampin
		Viscous	scous V	Vi					e	amping Typ
		89	35		quake)	oading	(% of		uake	nloading Q
		100	100			u)	(% of		evel	eloading L
			0			u)	(% of		evel	nloading L
		0.01			n)	ake) (i	Toe 🤇	ncluded	Gap (inc	esistance
		1.500					(kips)		eight	oil Plug W
		A = 0	h) ; RSA	Up Mato	(Wave	68	= 1	ity	h qualit	APWAP matc
	ft/	108 b,	=	Count		11 in;	= C			bserved: F
	/ft	108 b,	=	Count	Blow	11 in;	= C	ət	inal Set	omputed: F
	Top)	1.029 x	, max= 1	29.7 ms	(T=	.8 ksi	=	ress	mp. Stre	ax. Top Co
		2.0 ms)	, T= 32	32.8 ft	(Z=	.9 ksi	=		Stress	ax. Comp.
		2.1 ms)	, T= 42	36.1 ft	(Z=	29 ksi	= -C		Stress	ax. Tens.
).43 in)=(XM	ispl. (I	i Top Di	Measure	Et; max	.2 kip-	= 5		(EMX)	ax. Energy

I-10 MOBILE RIVER; Pile: TP-23C 1DAY RS 30'' PSC, 110' LONG; Blow: 6 Applied Foundation Testing, Inc. Test: 26-Apr-2018 11:06 CAPWAP(R) 2014-2 OP: AFT

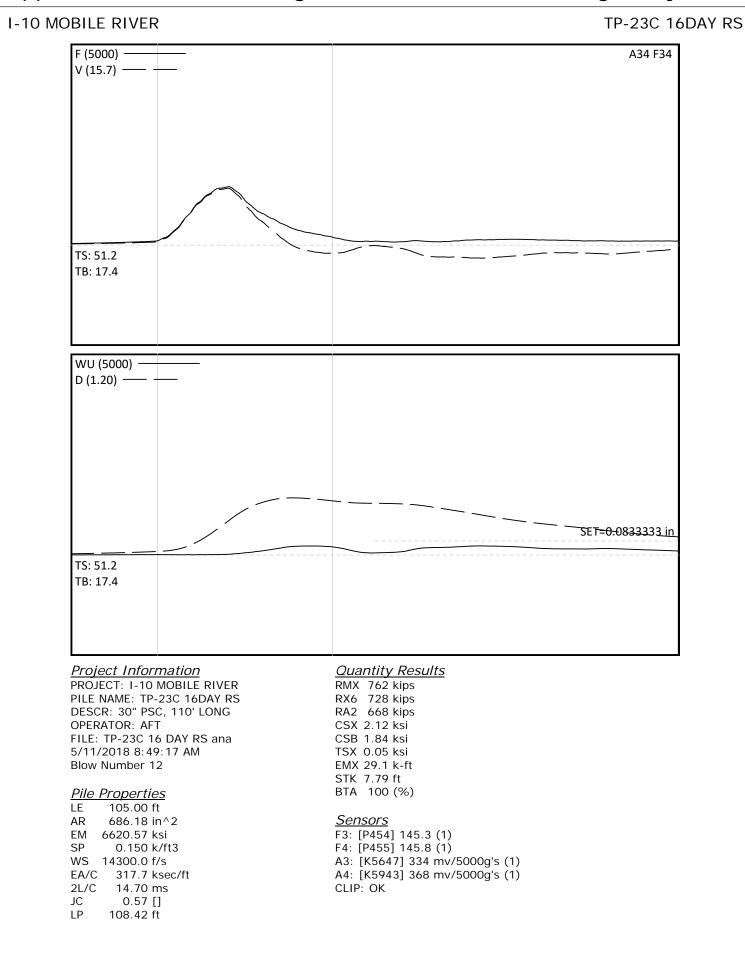
			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	i
1	3.3	1938.3	-114.0	2.8	-0.17	50.2	5.9	0.4
2	6.6	1943.2	-151.2	2.8	-0.22	50.2	5.9	0.4
4	13.1	1955.4	-183.7	2.8	-0.27	50.1	5.8	0.4
6	19.7	1971.4	-186.5	2.9	-0.27	49.9	5.8	0.4
8	26.3	1992.6	-194.0	2.9	-0.28	49.8	5.7	0.4
10	32.8	1995.4	-188.9	2.9	-0.28	49.1	5.6	0.4
12	39.4	1986.6	-187.2	2.9	-0.27	48.1	5.5	0.4
14	45.9	1974.7	-170.1	2.9	-0.25	47.1	5.4	0.4
16	52.5	1936.0	-144.3	2.8	-0.21	45.5	5.4	0.4
18	59.1	1882.0	-113.1	2.7	-0.16	43.6	5.3	0.4
20	65.6	1826.7	-64.2	2.7	-0.09	41.6	5.3	0.4
22	72.2	1793.8	-37.3	2.6	-0.05	40.2	5.2	0.4
23	75.5	1743.8	-41.9	2.5	-0.06	38.9	5.2	0.4
24	78.8	1734.5	-48.0	2.5	-0.07	38.9	5.3	0.4
25	82.0	1687.6	-45.9	2.5	-0.07	38.1	5.4	0.4
26	85.3	1653.3	-41.5	2.4	-0.06	38.1	5.5	0.4
27	88.6	1576.8	-29.0	2.3	-0.04	37.2	5.7	0.4
28	91.9	1529.5	-19.1	2.2	-0.03	37.2	5.9	0.4
29	95.2	1450.5	-5.2	2.1	-0.01	36.3	6.0	0.4
30	98.4	1394.5	-0.3	2.0	-0.00	36.2	6.1	0.4
31	101.7	1267.4	0.0	1.8	0.00	33.1	6.1	0.4
32	105.0	1278.6	-0.1	1.9	-0.00	28.4	6.1	0.
lute	32.8			2.9			(T =	32.0 ms
	36.1				-0.29		(T =	42.1 mg

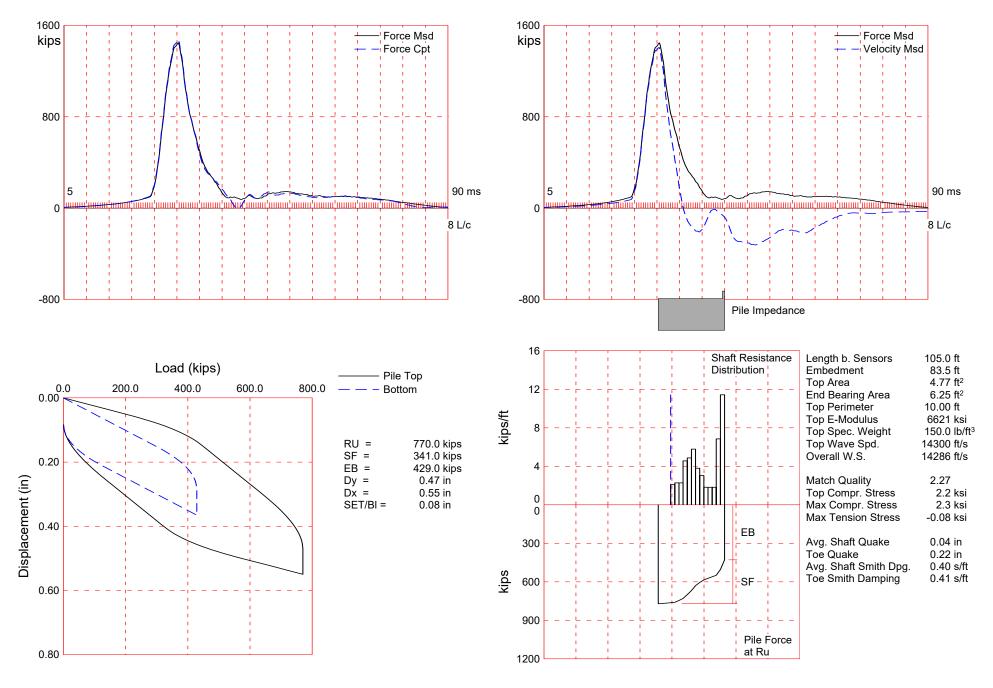
I-10 MC	BILE RIVER	; Pile:	TP-23C 1	DAY RS				Test: 26	-Apr-20	18 11:06
30'' PS	C, 110' LO	NG; Blow	: 6					C	APWAP(R) 2014-2
Applied	Foundatio	n Testin	g, Inc.							OP: AFT
				CAS	SE METHOD					
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	1702.6	1498.9	1295.2	1091.5	887.9	684.2	480.5	276.8	73.1	0.0
RX	1726.4	1517.2	1308.1	1098.9	913.4	809.0	731.6	668.0	620.9	581.2
RU	1853.0	1664.4	1475.7	1287.1	1098.5	909.8	721.2	532.5	343.9	155.3
RAU =	507.9 (k	ips); R	A2 =	783.6 (ki	ips)					
Current	CAPWAP Ru	= 750.0	(kips);	Correspo	onding J(RP)= 0.4	7; J(RX)	= 0.58		
VM	IX TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/	's ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
5.	9 29.43	1838.3	1901.1	1948.9	0.43	0.10	0.11	50.3	2239.5	1341

PILE PROFILE AND PILE MODEL

Depth	Area	E-Modulus	Spec. Weight	Perim.
ft	ft ²	ksi	lb/ft ³	ft
0.0	4.77	6620.6	150.000	10.00
105.0	4.77	6620.6	150.000	10.00
Toe Area	6.25	ft ²		

Top Segment Length 3.28 ft, Top Impedance 318 kips/ft/s


Wave Speed: Pile Top 14300.0, Elastic 14300.0, Overall 14269.7 ft/s


Pile Damping 2.00 %, Time Incr 0.230 ms, 2L/c 14.7 ms

Total volume: 500.336 ft^{3;} Volume ratio considering added impedance: 1.000

Applied Foundation Testing, Inc.

Pile Driving Analyzer ®

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. I-10 MOBILE RIVER; Pile: TP-23C 16DAY RS 30" PSC, 110' LONG; Blow: 12 Applied Foundation Testing, Inc.

	_				SUMMARY F					
	tips	429.0 kip	Toe ·	41.0; at	aft 3	along Sh	.0;	y: 770.	Capacit	1 CAPWAP
Uni	Unit	-	Sum	orce		Ru		Deptl	Dist.	Soil
Resist	sist.	Resis	of	Pile	in		w	Below	Below	Sgmnt
(Area	-	• -	Ru					Grade	Gages	No.
ks	ps/ft	kips/	kips	kips		kips	t	fi	ft	
				70.0	7					
0.2	2.11	2.	10.0	60.0	7	10.0	. 8	4.8	26.3	1
0.2	2.29	2.	25.0	45.0	7	15.0	.3	11.3	32.8	2
0.2	2.29	2.	40.0	30.0	7	15.0	.9	17.9	39.4	3
0.4	4.57	4.	70.0	00.0	7	30.0	.4	24.4	45.9	4
0.4	4.88	4.	102.0	68.0	6	32.0	. 0	31.0	52.5	5
0.5	5.79	5.	140.0	30.0	6	38.0	6	37.0	59.1	6
0.3	3.81	3.	165.0	05.0	6	25.0	.1	44.3	65.6	7
0.3	3.05	3.	185.0	85.0	5	20.0	7	50.	72.2	8
0.1	1.83	1.	197.0	73.0	5	12.0	.3	57.3	78.8	9
0.1	1.83	1.	209.0	61.0	5	12.0	. 8	63.8	85.3	10
0.1	1.83	1.	221.0	49.0	5	12.0	. 4	70.4	91.9	11
0.6	6.86	б.	266.0	04.0	5	45.0	9	76.9	98.4	12
1.1	11.43	11.	341.0	29.0	4	75.0	5	83.	105.0	13
0.4	4.08	4.				26.2			it	Avg. Shaf
68.6						429.0				Toe
		Тое	Shaft	S			ons	s/Extensio	arameter	Model Pa
		0.41	0.40						g Factor	h Dampin
		0.22	0.04				n)	(in	-	e
		0.55	0.43				-	-	Factor	Damping
		Smith	scous	Vis						ing Type
		87	30		ruake)	loading	of	(%		ading Qu
		100	100		1	-	of 1	-		ading Le
			0				of 1	•		ading Le
		0.706					ips)	-		Plug We
		N = 0	-) • P97	up Match	(Warr	.27	2	. =	auality	AP match
	£+	144 b/ft	=	Count	•	.08 in;		=		rved: Fi
		144 b/ft 144 b/ft	=	Count		.08 in;		=		uted: Fi
								_	n ^e trog	
	Top)	.058 x Tor	, max= 1	30.7 ms.	(T=	2.2 KS1		s =	D. DLIES	TOP COM
	Top)	058 x Tor 8 ms)		-	(T= (Z=	2.2 ksi 2.3 ksi		s = =	-	Top Comp. S
	Top)	-	, T= 32	30.7 ms, 32.8 ft, 23.0 ft,	•	2.2 ksi 2.3 ksi .08 ksi	:		tress	Top Comp Comp. S Tens. S

I-10 MOBILE RIVER; Pile: TP-23C 16DAY RS 30" PSC, 110' LONG; Blow: 12 Applied Foundation Testing, Inc. Test: 11-May-2018 08:49 CAPWAP(R) 2014-2 OP: AFT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	i
1	3.3	1481.0	0.0	2.2	0.00	29.1	4.3	0.3
2	6.6	1489.1	0.0	2.2	0.00	29.0	4.3	0.3
4	13.1	1507.8	-26.1	2.2	-0.04	28.9	4.2	0.3
6	19.7	1532.5	-50.9	2.2	-0.07	28.7	4.2	0.3
8	26.3	1562.1	-48.3	2.3	-0.07	28.6	4.1	0.3
10	32.8	1567.4	-33.0	2.3	-0.05	28.0	4.0	0.3
12	39.4	1559.1	-13.6	2.3	-0.02	27.2	3.9	0.3
14	45.9	1546.1	0.0	2.3	0.00	26.5	3.8	0.3
16	52.5	1491.3	0.0	2.2	0.00	25.0	3.7	0.3
18	59.1	1429.0	0.0	2.1	0.00	23.5	3.7	0.3
20	65.6	1340.4	0.0	2.0	0.00	21.6	3.6	0.3
22	72.2	1245.6	0.0	1.8	0.00	20.4	3.8	0.3
23	75.5	1175.3	0.0	1.7	0.00	19.4	3.9	0.3
24	78.8	1143.1	0.0	1.7	0.00	19.4	4.0	0.2
25	82.0	1080.2	0.0	1.6	0.00	18.7	4.1	0.2
26	85.3	1037.4	0.0	1.5	0.00	18.7	4.2	0.2
27	88.6	984.3	0.0	1.4	0.00	18.0	4.3	0.2
28	91.9	974.3	0.0	1.4	0.00	18.0	4.2	0.2
29	95.2	976.5	0.0	1.4	0.00	17.3	4.2	0.2
30	98.4	1018.6	0.0	1.5	0.00	17.2	4.1	0.2
31	101.7	965.6	0.0	1.4	0.00	15.1	4.0	0.2
32	105.0	1038.1	0.0	1.2	0.00	11.9	3.9	0.2
lute	32.8			2.3			(T =	32.8 m
	23.0				-0.08		(T =	41.8 ms

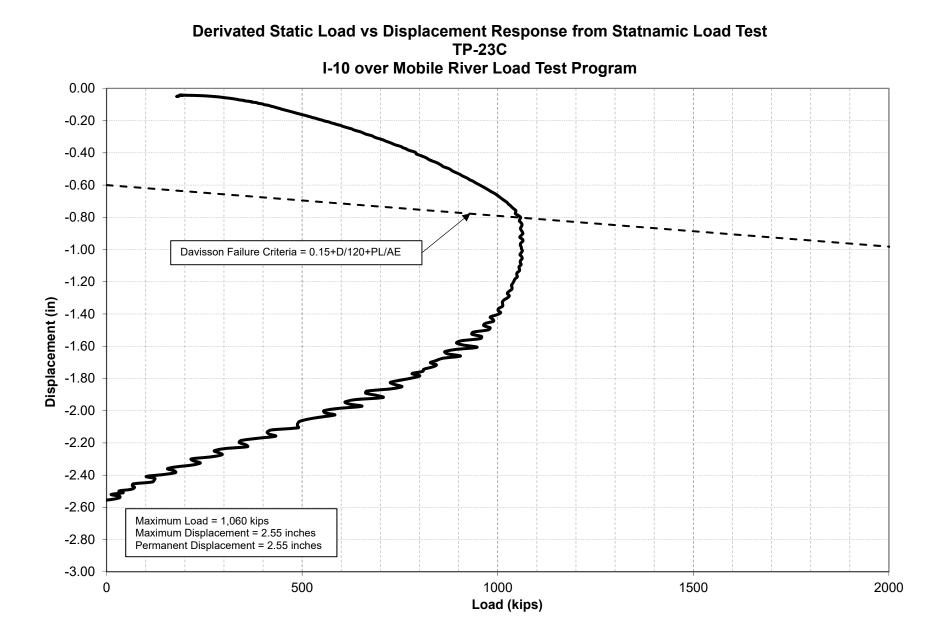
I-10 MOE	BILE RIVER	; Pile:	TP-23C 1	6DAY RS				Test: 11	-May-201	8 08:49
30" PSC	, 110' LON	G; Blow:	12					c	APWAP(R)	2014-2
Applied	Foundatio	n Testin	g, Inc.							OP: AFT
				CAS	SE METHOI	2				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	1491.1	1357.8	1224.4	1091.1	957.7	824.4	691.0	557.7	424.4	291.0
RX	1521.0	1387.0	1253.0	1119.0	985.6	853.1	729.6	620.4	514.9	433.8
RU	1679.5	1565.0	1450.5	1336.0	1221.5	1106.9	992.4	877.9	763.4	648.9
RAU =	421.4 (k	ips); R	A2 =	681.5 (ki	ips)					
Current	CAPWAP Ru	= 770.0	(kips);	Correspo	onding J	(RP)= 0.5	4; J(RX)	= 0.57		
VMD	K TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
4.4	4 30.52	1396.1	1428.5	1453.0	0.34	0.12	0.08	29.2	1651.0	1974

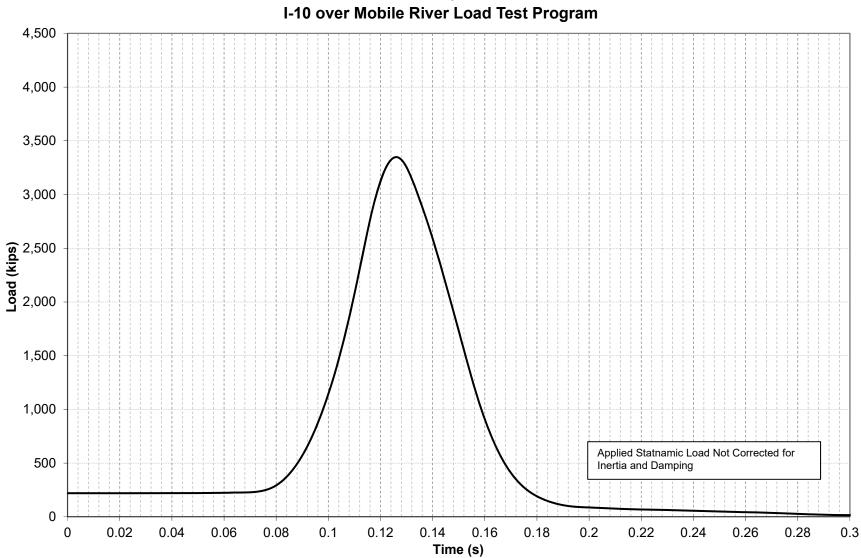
PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	ft ²	ksi	lb/ft ³	ft
	0.0	4.77	6620.6	150.000	10.00
	102.5	4.77	6620.6	150.000	10.00
	102.5	6.25	6620.6	150.000	10.00
	105.0	6.25	6620.6	150.000	10.00
Toe Area		6.25	ft ²		

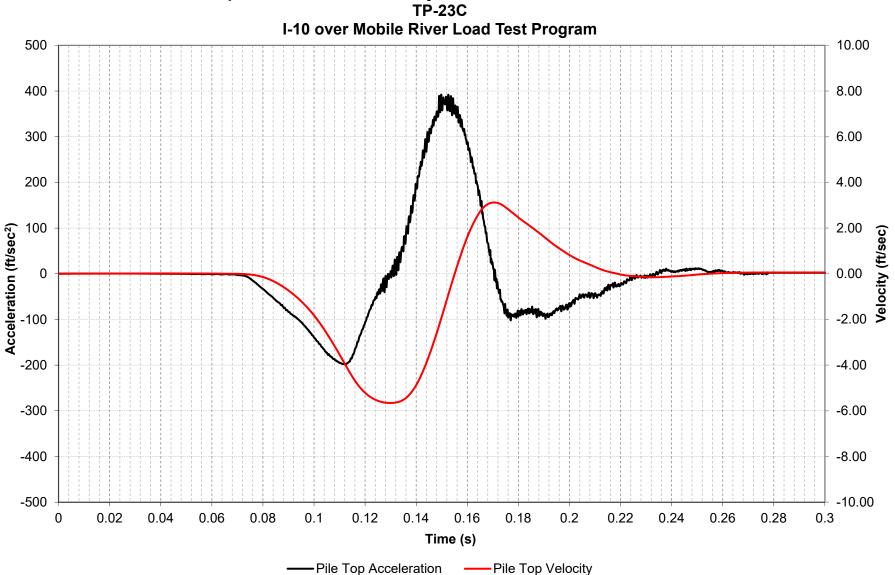
	Segmnt	Dist.	Impedance	Imped.		Tension	Com	pression	Perim.	Wave
	Number	B.G.		Change	Slack	Eff.	Slack	Eff.		Speed
		ft	kips/ft/s	%	in		in		ft	ft/s
_	1	3.3	317.69	0.00	0.00	0.000	-0.00	0.000	10.00	14300.0
	32	105.0	392.96	0.00	0.00	0.000	-0.00	0.000	10.00	14300.0

Wave Speed: Pile Top 14300.0, Elastic 14300.0, Overall 14285.7 ft/s Pile Damping 2.00 %, Time Incr 0.229 ms, 2L/c 14.7 ms Total volume: 504.044 ft^{3;} Volume ratio considering added impedance: 1.000

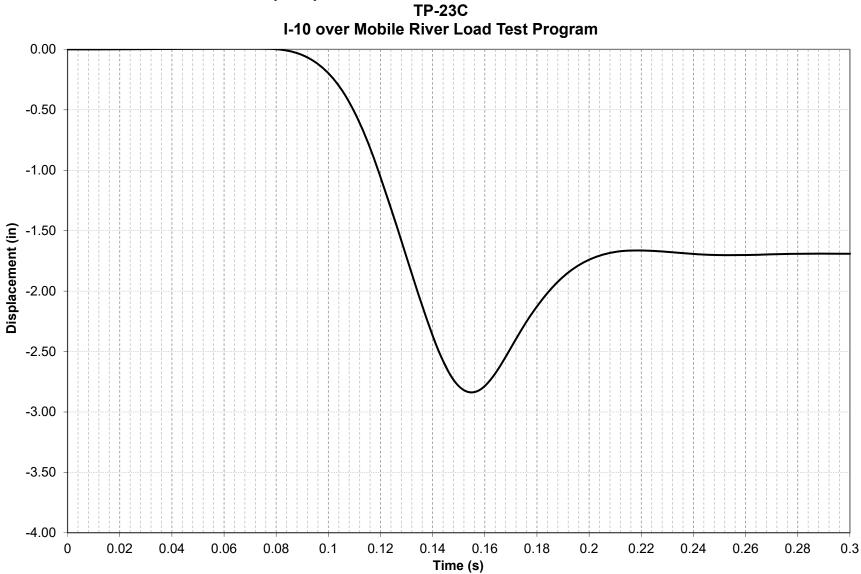



Appendix D

Axial Compressive Statnamic Rapid Load Testing Graphical Results TP-23C


I-10 over Mobile River Bridge Load Test Program

ALDOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008



Applied Statnamic Load vs. Time from Statnamic Load Test TP-23C I-10 over Mobile River Load Test Program

Pile Top Acceleration and Velocity vs. Time from Statnamic Load Test TP-23C

Pile Top Displacement vs. Time from Statnamic Load Test TP-23C

Applied Foundation Testing, Inc.

Appendix E Relevant Project Documents TP-23C

I-10 over Mobile River Bridge Load Test Program ALDOT Project No.: IM-I010(341)

DOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

GENERAL PROJECT NOTES

- 200 THE CONTRACTOR SHALL SUBMIT SHOP DRAWINGS DIRECTLY TO THE MATERIALS AND TESTS ENGINEER OF ALL RAPID LOAD TESTS, SHAFT LOAD TESTS AND STATIC LOAD TESTS FOR APPROVAL.
- THE CONTRACTOR SHALL PROVIDE REPORTS TO THE MATERIALS AND TESTS ENGINEER OF ALL STATIC LOAD TESTS, RAPID LOAD TESTS AND DYNAMIC TESTS, PREPARED BY SPECIALTY ENGINEERING FIRMS.
- 202 THE CONTRACTOR SHALL SUBMIT AN INSTALLATION PLAN FOR REVIEW AND APPROVAL FOR ALL TEST PILES IN THIS PROJECT.
- SOI LOCATION TP-10:

001		
	ALL FOUR TEST PILES SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO PLANNED TIP ELEVATION OR TO REFUSAL, WHICHEVER COMES FIRST (NO JETTING). CONTRACTOR SHALL PLAN TO RESTRIKE MEASUREMENT ON EACH PILE FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS AT APPROXIMATELY I DAY AFTER INITIAL DRIVE. CONTRACTOR SHALL PLAN FOR RESTRIKE MEASUREMENT ON PILES TP-IOA-I AND TP-IOB-I FOR DYNAMIC LOAD TESTING AN SIGNAL MATCHING ANALYSIS AT APPROXIMATELY 7 DAYS AFTER INITIAL DRIVE. CONTRACTOR SHALL PERFORM STATIC LOAD TEST ON PILES TP-IOA-2 AND TP-IOB-2 IN ACCORDANCE WITH APPLICABLE SPECIAL PROVISIONS CONTRACTOR SHALL PLAN FOR RESTRIKE MEASUREMENT ON PILES TP-IOA-2 AND TP-IOB-2 FOR DYNAMIC LOAD TESTING AN	ND
302	SIGNAL MATCHING ANALYSIS WITHIN 7 DAYS AFTER STATIC LOAD TEST.	
	PILE MAY BE INSTALLED WITH ONE SPLICE, AND FINAL PIECE SHALL NOT BE LESS THAN 75 FT IN LENGTH.	
	VIBRATORY HAMMER MAY BE USED TO INSTALL FIRST PIECE, AFTER SPLICING THE PILE Shall be driven to the target tip elevation using impact hammer.	
	CONTRACTOR TO PROVIDE HAMMER SUFFICIENT TO DRIVE PILE TO TIP WITH WAVE EQUATION ANALYSIS PER ALDOT SPECS, WITH TARGETED DRIVING RESISTANCE AT END OF INITIAL DRIVE NOT MORE THAN 10 BLOWS PER INCH.	
	DYNAMIC MONITORING OF PILE USING PDA DURING INSTALLATION AFTER SPLICE, WITH SIGNAL MATCHING ANALYSIS ON SELECTED BLOWS NEAR END OF INITIAL DRIVE.	
	RAPID LOAD TEST OF PILE USING 19MN RAPID LOAD TEST DEVICE BETWEEN 10 AND 21 DAYS AFTER INITIAL DRIVE.	
303	RESTRIKE BLOWS FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS WITHIN ONE WEEK AFTER COMPLETION OF RAPID LOAD TEST (RLT). LOCATION TP-WPB DRILLED SHAFT:	
	CONTRACTOR TO PERFORM LATERAL RAPID LOAD TESTS USING RAPD LOAD TEST DEVICE AFTER COMPLETION OF AXIAL LOAD TEST(S); LATERAL RLT SHALL BE CAPABLE TO APPLY A LATERAL FORCE OF AT LEAST 1000 KIPS. LATERAL RLT SHALL BE PERFORMED IN FOUR PROGRESSIVELY LARGER INCREMENTS UP TO MAXIMUM FORCE.	
	LATERAL RLT SHALL INCLUDE MEASUREMENTS OF FORCE AND TOP OF SHAFT DISPLACEMENT AND OF DISPLACEMENT AT NOT LESS THAN 6 ELEVATIONS BELOW TOP OF SHAFT.	
	TEST SHAFT SHALL BE CONSTRUCTED USING POLYMER BASED DRILLING FLUIDS, WITH ON-SITE SUPPORT FROM FLUID SUPPLIER.	
304	LOCATION TP-04:	
	JETTING OF TP-04 ALLOWED (BUT NOT REQUIRED) TO ELEVATION -70FT PILE SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO TIP ELEVATION -110FT OR TO REFUSAL, WHICHEVER COMES FIRST CONTRACTOR SHALL PLAN FOR UP TO TWO RESTRIKE MEASUREMENTS ON THIS PILE AT APPROXIMATELY I DAY AND 14 DAYS AFTER INITIAL DRIVE FOR DYNAMIC LOAD TESTING AND	
305	SIGNAL MATCHING ANALYSIS. LOCATION TP-23:	0
	JETTING OF TP-23A SHOULD BE PERFORMED TO ELEVATION -100FT JETTING OF TP-23B AND TP-23C ALLOWED (BUT NOT REQUIRED) TO ELEVATION -70FT PILE SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO PLANNED TIP ELEVATION OR TO REFUSAL, WHICHEVER COMES FIRST. PLANNED TIP ELEVATION: TP-23A: -130 TP-23B: -100	
	TP-23C:-100 CONTRACTOR SHALL PLAN FOR RESTRIKE MEASUREMENT ON EACH PILE FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS AT ONE DAY AFTER INITIAL DRIVE AND WITHIN ONE WEEK AFTER COMPLETION OF RAPID LOAD TEST (RLT).	
	RAPID LOAD'TEST OF EACH PILE USING 19MN RAPID LOAD TEST DEVICE NOT SOONER THAN 2 WEEKS AFTER INITIAL DRIVE.	
306	LOCATION TP-III: FOR TP-IIIA, JETTING IS ALLOWED (BUT NOT REQUIRED) TO ELEVATION -60FT	
	FOR TP-ITIA, JETTING IS ALLOWED (BUT NOT REGULARD) TO ELEVATION -BOLT FOR TP-ITIB, JETTING SHALL BE PERFORMED TO ELEVATION -90FT BOTH PILES SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO TIP ELEVATION -120FT OR TO REFUSAL, WHICHEVER COMES FIRST CONTRACTOR SHALL PLAN FOR UP TO TWO RESTRIKE MEASUREMENTS ON THESE PILES AT APPROXIMATELY	
	I DAY AND 14 DAYS AFTER INITIAL DRIVE FOR DYNAMIC LOAD TESTING AND SIGNAL MAICHING ANALYSIS.	
307	TEST PILES TP-WPA AND TP-WPB SHALL BE PLACED WITHIN THE LIMITS AN EXPLORATION TRENCH.IF REQUIRED SPACING IS NOT ADEQUATE IN ONE TRENCH,ONE OF THE PILES MAY BE PLACED IN AN ADJACENT EXPLORATION TRENCH.	

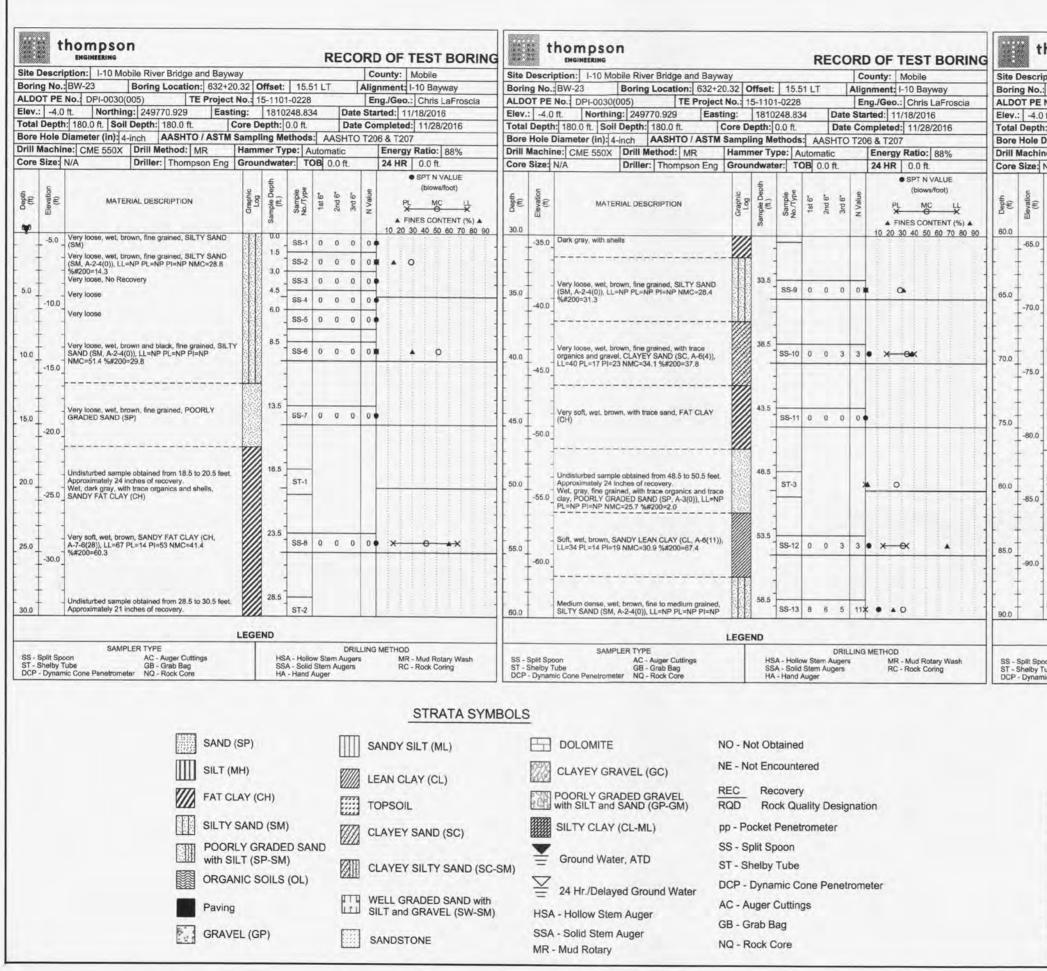
- 308 THE CONTRACTOR SHALL CONTACT BILL TURNER (334-2 SECTION OF THE ALABAMA DEPARTMENT OF TRANSPORT TO STARTING WORK IN ORDER TO MAKE SURE THE EXPL
- 800 IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO COM AND DETERMINE THE EXACT LOCATION OF ALL EXISTING SHOWN ON THE PLANS OR NOT. THE LOCATION OF ANY RE OF ANY NATURE AND/OR ELECTRICAL/COMMUNICATIONS CO BY THE ENGINEER TO PREVENT ANY CONFLICTS WITH THE WILL BE LIMITED TO INCREMENTS NOT TO EXCEED 2000 MULTIPLE REQUESTS WILL BE REQUIRED FOR PROJECTS G
- 900 NPDES PERMIT COVERAGE NOT REQUIRED FOR THIS PRO
- 901 THERE SHALL BE NO FUEL TANKS STORED ON THE RIGH VEHICLES TRANSPORTING CHEMICALS, FERTILIZER, ETC., WAY.
- 902 THE CONTRACTOR SHALL FOLLOW ALL REQUIREMENTS CON AND ANY REQUIREMENTS FROM U.S. FISH AND WILDLIFE SI
- 903 THE CONTRACTOR SHALL FOLLOW THE ALDOT STANDARD MAN
 - A. THE LEAD PROJECT PROPONENT/CONTRACTOR SHALL INS OF THE POTENTIAL PRESENCE OF MANATEES AND THE N CONSTRUCTION PERSONNEL ARE RESPONSIBLE FOR OBSE OF MANATEES. THE U.S. FISH AND WILDLIFE SERVICE WO THIS SPECIES TO ACT AS A SPOTTER FOR MANATEES I
 - B. THE LEAD PROJECT PROPONENT/CONTRACTOR SHALL ADV AND CRIMINAL PENALTIES FOR HARMING, HARASSING, OR MARINE MAMMAL PROTECTION ACT OF 1972 AND THE EN
 - C. SILTATION BARRIERS SHALL BE MADE OF MATERIAL IN PROPERLY SECURED, AND ARE REGULARLY MONITORED T BLOCK MANATEE ENTRY TO, OR EXIT FROM, ESSENTIAL F
 - D. ALL VESSELS ASSOCIATED WITH THE CONSTRUCTION PRO ALL TIMES WHILE IN THE CONSTRUCTION AREA AND WH LESS THAN A FOUR-FOOT CLEARANCE FROM THE BOTTO WHENEVER POSSIBLE.
 - E. IF MANATEES ARE SEEN WITHIN 100 YARDS OF THE ACT MOVEMENT, ALL APPROPRIATE PRECAUTIONS SHALL BE I PRECAUTIONS SHALL INCLUDE THE OPERATION OF ALL M MANATEE. OPERATION OF ANY EQUIPMENT CLOSER THAN SHUTDOWN OF THAT EQUIPMENT. ACTIVITIES WILL NOT PROJECT AREA OF ITS OWN VOLITION.
 - F. ANY COLLISION WITH AND/OR INJURY TO A MANATEE SI WILDLIFE SERVICE IN DAPHNE (251-441-5181).
 - G. TEMPORARY SIGNS CONCERNING THE MANATEES SHALL B CONSTRUCTION/DREDGING ACTIVITIES. ALL SIGNS ARE T PROPONENT/CONTRACTOR UPON COMPLETION OF THE PRO WHICH READS CAUTION: MANATEE AREA WILL BE POSTED CONSTRUCTION CREWS. A SECOND SIGN SHOULD BE POS' AND SHOULD BE PLACED VISIBLE TO THE VESSEL OPER/ WHICH READS CAUTION: MANATEE HABITAT. IDLE SPEED CONSTRUCTION AREA. ALL EQUIPMENT MUST BE SHUTDO ANY COLLISION WITH AND/OR INJURY TO A MANATEE SI WILDLIFE SERVICE IN DAPHNE (251-441-5181).

904-914 OMIT

915 BASIN BOOM SHALL BE REUSED AS NECESSARY AT EACH

			3	REFEREN		FISCAL YEAR	SHEET NO.
				IM-1010(2018	2
DITAT	144) WITH N NO LA TION TRE	FER THAN	N TWO) (2) WE	EKS P	RIOR	
UTILI EQUIRI CONDU ESE U	T THE VA ITIES ON ED GUARD ITS MAY JTILITIES. AR FEET ER THAN	THIS PRO RAIL, SIG BE ADJUS UTILITY PER WOR	OJECT SNS, FO STED LINE KING	WHETHEF OOTINGS AS DIREC LOCATE DAY OPEI	TED REQUE	NS.	÷
OJECT HT OF NOT	WAY. IN Shall Be	I ADDITIO	ON, FL JNATT	JEL TRUC ENDED O	KS OF N THE	R RIGHT	OF
NTAIN SERVIO	ED WITHIN CE.	N THE AF	RMY C	ORPS OF	ENGI	NEERS P	ERMIT
NTEE (CONSTRUC	TION CON	DITION	NS LISTED	BELO	W:	
NEED ERVINC	T ALL PE TO AVOID G WATER-F RECOMMEN IG IN-WAT	COLLISIC RELATED A	ACTIV ACTIV	ITH MANAT ITIES FOR NDIVIDUAL	TEES. THE	ALL PRESENC	E
KILL	ALL CONS ING MANA ERED SPE	TEES WHIC	CH AR	E PROTEC	AT TH TED U	IERE ARE NDER TH	E CIVIL E
WHICH O AVO HABIT	H MANATEE DID MANAT AT.	ES CANNO FEE ENTRA	T BEC APMEN	OME ENTA T. BARRIE	NGLED RS MU	, ARE JST NOT	
ILF I	T SHALL O N WATER LL VESSEL	WHERE TH	E DRA	FT OF TH	E VES	SEL PRO	DVIDES
IMPLE MOVIN	DAILY CON MENTED T IG EQUIPM FEET TO A ME UNTIL	O ENSURE ENT NO (A MANATE	L THEI CLOSEF E SHA	R PROTEC R THAN 50 LL NECES	TION.) FEE SITAT	THESE F OF A E IMMED	
SHALL	BE REPOR	TED IMME	EDIATE	ELY TO TH	HE U.S	.FISH A	ND
ROJEC D IN STED RATOR IS RI OWN I	STED PRIC E REMOVED T. A SIGN A LOCATIC IF VESSEL . THE SEC EQUIRED I F A MANA BE REPOR	MEASURI N PROMIN S ARE AS OND SIGN F OPERAT TEE COME	NG AT NENTL SSOCIA SSOCIA SHOU ING A S WIT	F LEAST 3 Y VISIBLE ATED WITH JLD BE AT VESSEL FHIN 50 F	TO V THE LEAS IN TH EET C	VATER RI CONSTRI ST 8" BY E IF OPERA	ELATED JCTION II" ATION.
LOCA	ATION (W4	ATER).					
	CI	URRENT ALAE	BAMA DE	PARTMENT OF	TRANS	PORTATION	
	TRANSPORTA ANY ORGANIZ OF TRANSPOR	ATION AND IS NOT THATION REPRESENT	TO BE COPIE E EXPRESSE ATIVE AUTH	ED FOR USE BY THE D, REPRODUCED, AL D WRITTEN CONSENT DRIZED TO APPROVE DE PROSECUTED TO	OF THE AL. THIS USE.	JSED BY ANYONE, ABAMA DEPARTME ANYONE MAKING	NT
	BEVI	SIONS	Contraction of the second seco	NY. CALLAR	F TRA	A DEPAR NSPORTA DUISEUM BOULEV ERY, AL 36130-	TION
				GENERAL	PROJE	CT NOTE	S
					RAWING NO.		INDEX N

PILE TIP ELEVATIONS

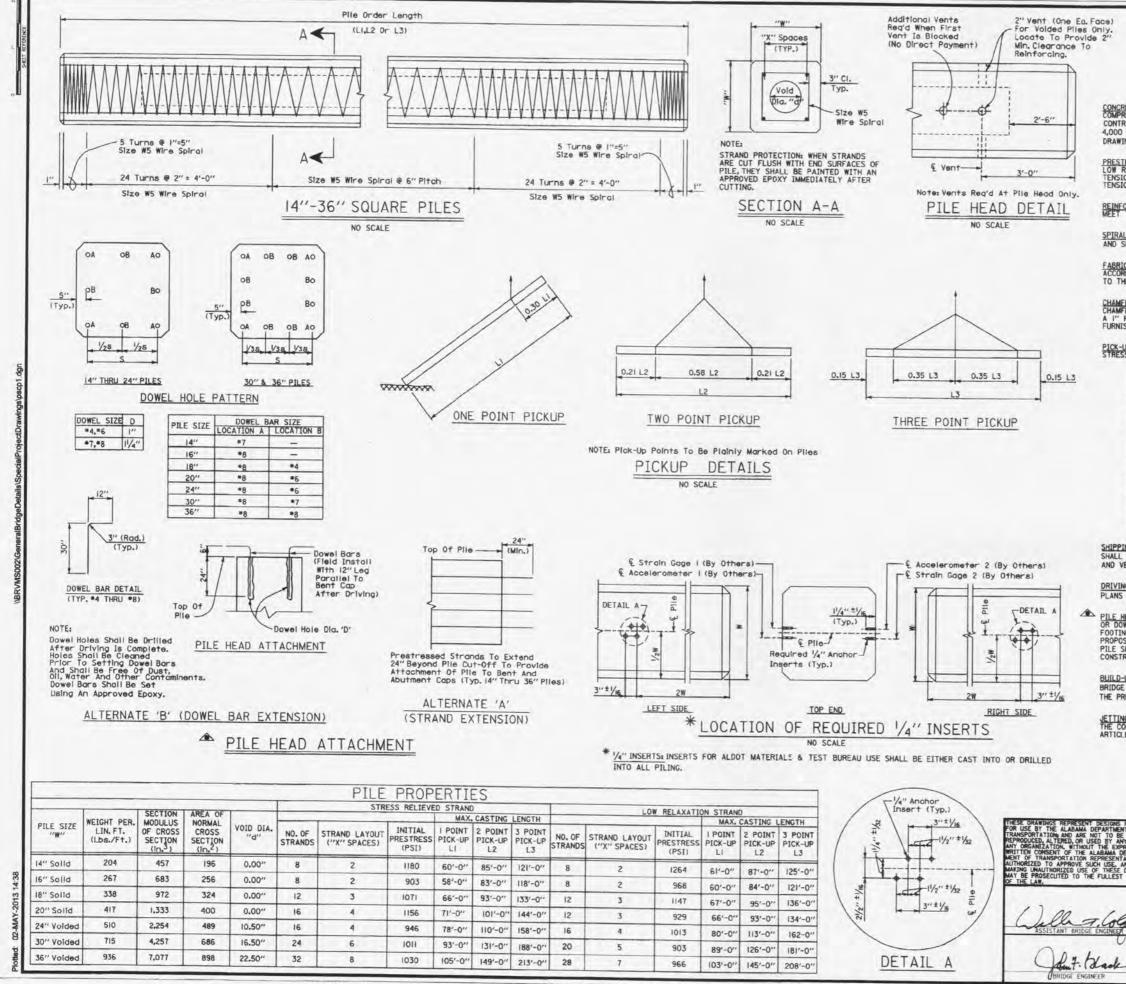

			PILE TIP ELEVATION	IS AND TARGETED NON	/INAL RESISTANCE		
TEST PILE	PILE TYPE	STATION	SIDE	OFFSET	PILE LENGTH (FT)	TARGETED NOMINAL RESISTANCE (kips)	ES ELI
TP-10A-1	HP 14X89	STATION 469+20.00	RT	110	82	300	
TP-10A-2	HP 14X89	STATION 469+20.00	RT	111	82	300	
TP-10B-1	18" PPC SQUARE	STATION 469+60.00	RT	110	77	650	
TP-10B-2	18" PPC SQUARE	STATION 469+60.00	RT	110	77	650	
TP-WPA	60" STEEL PIPE	STATION 513+33.00	LT	100	175	3100	
TP-WPB	72" DRILLED SHAFT	STATION 513+53.00	LT	100	177	N/A	
TP-04	54" PPC CYLINDRICAL	STATION 574+00.00	LT	150	120	3100	
TP-23A	54" PPC CYLINDRICAL	STATION 629+57.00	LT	150	140	3100	
TP-23B	54" PPC CYLINDRICAL	STATION 630+00.00	LT	150	110	3100	
TP-23C	30" PPC SQUARE	STATION 630+43.00	LT	150	110	1500	
TP-111A	54" PPC CYLINDRICAL	STATION 897+50.00	RT	150	130	3100	
TP-111B	54" PPC CYLINDRICAL	STATION 898+00.00	RT	150	130	3100	

RESPONSIBLE PE:	SUPERVISOR:	DESIGNER	PLAN SUBMITTAL ALABAMA DEPARTMENT OF TRANSPORTATION
DATE:	DATE	DATE:	

	REFERENCE	FISCAL	SHEET
	PROJECT NO IM-I010(341)	2018	NO 2A
		7	
STIMATED TIP LEVATION (FT)	MINIMUM TIP ELEVATION (FT)		
-65			
-65			
-60			
-60 -170		-	
-170			
-110	-80	_	
-130 -100		-	
-100			
-120			
-120			
	SHEET TITLE	F	

			PLAN SHEET	
	TP-23B 54" PPC CYLINDRICAL PILE LOAD TEST TP-23A 54" PPC CYLINDRICAL PILE LOAD TEST		P-23C 0" PPC QUARE LOAD EST	
+000 men na na bala na ny da sa da sa tao na sa		630+00	WB I-10	
(1) The second state are been and space of an anomaly and the term of the second state of the second st	ین می اورد از این	(1) αφορά το μου το δού σε στού του το του το	EB 1-10	n a a a a a shaa a a a a Ga - 0 aa a a a a a a aa a a a a a a a a a a

	REFERENCE PROJECT NO	FISCAL YEAR	SHEET NO
	IM-I010(341)	2018	7
	PROJECT NO 200, 201, 20 304		
		64(
			STA 640+00
NOTE: SEE S PILE TIP ELE	SHEET 2A FO	OR	
50 0 50 Z SCALE (FEET) ST	SHEET TITLE	F	ROUTE


thompson ENGINEERING	RECORD OF TEST BORING	100000000000000000000000000000000000000	ING			RECO		TEST BORING	Site Desc	the
Bore Hole Diameter (in): 4-inch AASHTO / ASTM Samp	15-1101-0228 Eng./Geo.: Chris LaFroscia 1810248.834 Date Started: 11/18/2016 Depth: 0.0 ft. Date Completed: 11/28/2016 Ding Methods: AASHTO T206 & T207 Tarter yrain 88% undwater: TOB 0.0 ft. 24 HR 0.0 ft.	Boring No.: BW-23 ALDOT PE No.: DPI-1 Elev.: 4.0 ft. No Total Depth: 180.0 ft. Bore Hole Diameter (Soil Depth: 180.0 ft.	20.32 Offset: tt No.: 15-110 tting: 1810 Core Depth: M Sampling M Hammer Ty	1-0228 248.834 0.0 ft. ethods: /pe: Au	Date Date AASHTO	Started: 11 Completed T206 & T207 Energy 24 HR	-10 Bayway Chris LaFroscia /18/2016 11/28/2016 7 Ratio: 88% 0.0 ft.	Boring No ALDOT PI Elev.: -4. Total Dep Bore Hole Drill Mach Core Size	o.: BV E No. 0 ft. oth: 11 e Diar hine:
Image: State of the state	Bon • SPT N VALUE (blows/foot) Bon • SPT N VALUE (blows/foot) PL MC PL MC MC LL V • FINES CONTENT (%) ▲ 10 20 30 40 50 60 70 80 90	120.0 -125.0	MATERIAL DESCRIPTION	Graphic Log Sample Depth (ft.)	Sample No./Type	1st 6" 2nd 6" 3rd 6"	N Value	● SPT N VALUE (blows/foot) MC LL → → NES CONTENT (%) ▲ 30 40 50 60 70 80 90	41d⊕0 150.0 	
95.0 -100.0	93.5 SS-20 19 25 29 54 •	125.0 130.0	ioisi, brown and gray, with trace sand, A-7-6(34)), LL=50 PL=14 PI=36 %#200=91.9	AT 123.5	- 	8 11 13	24 X (3	*		- De A-2 %#
Very dense, wet, brown, medium to fine grained, POORLY GRADED SAND with GRAVEL (SP, A-1-b(0)), LL=NP PL=NP PI=NP NMC=11.6 %#200=4.4	98.5 SS-21 19 26 31 57XA O	130.0 -135.0	, wet, brown, fine grained, POORLY AND with SILT (SP-SM)	128.5		20 28 42	70		160.0 -165.	
105.0 -110.0	103.5 SS-22 18 18 18 34	Very dense	, fine to medium grained	133.		25 36 44	80		165.0 -170	- Ve CL 0.0
Hard, moist, brown and gray, LEAN CLAY (CL)	108.5 SS-23 13 16 21 37	140.0 GRADED S	, wet, brown, fine grained, POORLY AND with SiLT (SP-SM, A-3(0)), LL=1 NP NMC=26.2 %#200=8.7	P		22 33 31	64 X ▲ C		170.0	- Ha
Hard, moist, brown and gray, with trace sand, LEAN 115.0 -120.0 -120.0	113.5 SS-24 14 15 19 34 X0 • X	145.0Very dense		143.		21 27 40	67	•	175.0	- Ha
120.0 Hard	118.5 SS-25 14 17 22 39	150.0 Very dense		148.		11 26 34	60		180.0	- Ve A-
LEG SAMPLER TYPE SS - Split Spoon AC - Auger Cuttings ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core	DRILLING METHOD HSA - Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers RC - Rock Coring HA - Hand Auger	SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Per	SAMPLER TYPE AC - Auger Cuttings GB - Grab Bag netrometer NQ - Rock Core	S	SA - Hollo SA - Solid A - Hand	w Stem Augers) R - Mud Rotary Wash C - Rock Coring	SS - Split S ST - Shelb DCP - Dyn	by Tube
	STRATA SYM	BOLS								
with SILT ((CH) LEAN CLAY (CL) TOPSOIL TOPSOIL CLAYEY SAND (SC) (SP-SM) SOILS (OL) CLAYEY SILTY SAND (SC) WELL GRADED SAND with SILT and GRAVEL (SW-SM)	-SM)	Y GRAVEL (GC) Y GRADED GRAVEL T and SAND (GP-GM) CLAY (CL-ML) d Water, ATD Delayed Ground Water w Stem Auger Stem Auger		acounte ecovery ock Qu t Penel Spoon y Tube amic C r Cuttin Bag	ered / ality Desig rometer one Pene				

1.00

ENG							-			-	T	P	ROJI	FERENCE FISCAL SHEE ECT NUMBER YEAR NUMBE
tion											L	-	IM	-1010(341) 2018 25
tion	np	SO	n							R	REC	:0	RD	OF TEST BORIN
	1-	10 Mo	bile Riv	er Bridg	je an	d Baywa	ay	-		-			100	unty: Mobile
BW-2	-			g Locat	_					1 LT		1		nment: I-10 Bayway
t.	-	0030(770.929	-	Easti		-	-0228	4	D	ate		rted: 11/18/2016
-	-	-	-	: 180.0	ft.	C	ore D	epth:	0.0 ft.		D)ate	Cor	mpleted: 11/28/2016
-		(in): 4	-							-		TO	T20	6 & T207
/A	ME	550X		Method	_			ner Ty ndwate	_		-			Energy Ratio: 88% 24 HR 0.0 ft.
			-	1			T	5						SPT N VALUE
		MATE	RIAL DE	SCRIPTIC	N		Graphic Log	Sample Depth (ft.)	Sample No./Type	1st 6"	2nd 6*	3rd 6*	N Value	(blows/foot) PL MC LL ★ FINES CONTENT (%) ▲ 10 20 30 40 50 60 70 80 90
								-						
							1	-						
Dense	e, wet	, brown	, fine ora	ined, SIL	TY SAL	ND (SM.		153.5			1-		-	
4-2-4	(0)), L 0=31	L=NP F	PL=NP P	I=NP NM	C=19.2			-	SS-32	15	17	21	38>	
								-						
Mediu	ım de	inse						158.5	SS-33	6	9	12	21	•
							1							
Ver	otiff -	noist b	Charles mand	blank C	MOV	FAN		163.5	-	-	-	-		
CLAY	stiff, n (CL)	HUIST, DI	own and	black, SA	NUT	EAN		-	SS-34	5	9	13	22	•
Hard	mois	t, brown	, SAND	Y LEAN C	LAY (L, A-6(5)		168.5	-					
LL=2	8 PL=	15 Pl=	13 NMC=	15.5 %#2	00=62	.1		-	SS-35	11.	15	19	34	8-ו ▲
Hard								173.5	SS-36	12	15	17	32	
								-						
									-					
Var	etilf -	maint t	-	NDVICA	NO	VICI		178.5	-		_			
				NDY LEA					SS-37	10	12	15	27	× 0 •× ▲
							LEG	END						
-	-	SAM	PLER TY		-		LEG			-				METHOD
on			GE	- Auger	lag	S		SS	A - Holl A - Soli	d Ster	n Aug	ugers gers		MR - Mud Rotary Wash RC - Rock Coring
c Cor	ie Pe	netrom	eter NC	2 - Rock (Core		_	HA	- Hand	Auge	r	-		

thompson		O OF TEST BORING	a re value	hompson			RECO	ORD OF TEST BORING		1010000
Elev.: -4.0 ft. Northing: 249770.929 Easting Total Depth: 180.0 ft. Soil Depth: 180.0 ft. Cor Bore Hole Diameter (in): 4-inch AASHTO / ASTM Sar Drill Machine: CME 550X Drill Method: MR Hat	2 Offset: 15.51 LT Alig 2. 15-1101-0228 Et 1. 1810248.834 Date State re Depth: 0.0 ft. Date Compling Methods: mmer Type: Automatic	bunty: Mobile nment: I-10 Bayway ng./Geo.: Chris LaFroscia rted: 11/18/2016 mpleted: 11/28/2016 6 & T207 Energy Ratio: 24 HR 0.0 ft.	Boring No ALDOT PE Elev.: -1.5 Total Depth Bore Hole I Drill Machin	No. DPI-0030(005) TE Project ft. Northing: 238883.4863 East i1 120.0 ft. Soil Depth: 120.0 ft. Diameter (in): i2 CME 45C Drill Method: MR	44.18 Off t No.: 15- ting: 1 Core Dep I Samplin Hamme	1101-0228 1833753.01 oth: 0.0 ft. g Methods er Type: M	Dat Dat AASHTC	County: Mobile Alignment: I-10 Bayway Eng./Geo.: Justin Fancher e Started: 12/14/2015 te Completed: 12/15/2015 D T206 & T207 Energy Ratio: 86% 24 HR	Borin ALDO Elev. Total Bore Drill	Descri ng No. OT PE : -1.5 I Depth Hole I Machin Size:
Core Size: N/A Driller: Thompson Eng Gi 5 5 5 6 6 0 5 6 6 6	Craphic Graphic (ff) (ff) (ff) (ff) (ff) (ff) (ff) (ff		Core Size:	MA Uniter: I nompson Eng	g	Sample Depth (ft.) Sample No.77ype	3rd 6" 3rd 6"	SPT N VALUE (blows/foot)	41deg 30.0	5
Boring Terminated at 180.0 feet.			-5.0	Very soft, wet, dark gray, LEAN CLAY with SAND (CL) Very soft Very soft Very soft, wet, dark gray, LEAN CLAY with SAND A-7-6(16)), LL=49 PL=26 PI=23 NMC=26.5 %#200=72.3 Very soft, No Recovery Very soft	CL.	0.0 1.5 3.0 4.5 8.5 8.5 55-2 55-2 55-3 55-3 55-3 55-4 6.0 55-5 5			35.0	-35.0
				Very loose, wet, gray, fine grained, POORLY GRADED SAND (SP) Very loose, wet, gray, fine to medium grained, SIL SAND (SM)		13.5 SS-7	0 0 1		45.0	-45.0
			25.0	Very loose, wet. gray, fine to medium grained, SIL SAND (SM, A-4(0)), LL=NP PL=NP PI=NP NMC=7 %#200=39,1	TY 97.9	23.5 \$\$-9	0 0 0	0 M O A	55.0	
			30.0	Very loose			0 0 0		60.0	-60.0
LI SAMPLER TYPE SS - Split Spoon AC - Auger Cuttings ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core	EGEND DRILLING HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger	B METHOD MR - Mud Rotary Wash RC - Rock Coring	SS - Split Sp ST - Shelby DCP - Dynar	SAMPLER TYPE oon AC - Auger Cuttings Tube GB - Grab Bag nic Cone Penetrometer NQ - Rock Core	LEGEN	HSA - Holle	ow Stem Augers	ILLING METHOD rs MR - Mud Rotary Wash a RC - Rock Coring	SS - ST - DCP	Split Sp Shelby - Dynar
POORLY	AND (SM)	STRATA SYM		DOLOMITE CLAYEY GRAVEL (GC) POORLY GRADED GRAVEL with SILT and SAND (GP-GM) SILTY CLAY (CL-ML)	NE - No REC RQD pp - Poo SS - Sp	cket Pene lit Spoon	ered y uality Desi trometer	ignation		
		CLAYEY SILTY SAND (SC- VELL GRADED SAND with SILT and GRAVEL (SW-SM) SANDSTONE		Ground Water, ATD 24 Hr./Delayed Ground Water A - Hollow Stem Auger A - Solid Stem Auger - Mud Rotary	DCP - D AC - Au GB - Gr	iger Cuttir	Cone Pene	etrometer		

Mompson Record of Test Borling iption: I-10 Mobile River Bridge and Bayway County: Mobile iption: I-10 Mobile River Bridge and Bayway County: Mobile iBW-110 Boring Location: 894+44.18 Offset: 19.23 RT Alignment: I-10 Bayway No. DPI-0030(005) TE Project No.: 15-1101-0228 Eng./Geo.: Justin Fancher int: Northing: 238883.4863 Easting: 1833753.01 Date Started: 12/14/2015 int: 20.0 ft. Soil Depth: 120.0 ft. Core Depth: 0.0 ft. Date Completed: 12/15/2015 Diameter (in): 4-inch AASHTO / ASTM Sampling Methods: AASHTO T206 & T207 Record action: 86% N/A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image between the second test action of the second test	BENEFINE RECORD OF CEST DEDIMIN County: Mobile Deving county: Mobile Mobile County: Mobile County: Mobile										F	PROJ	EFERENCE ECT NUMBER	FISCAL YEAR	SHEE
RECORD OF TEST BOCKI RECORD OF TEST BOCKI potion: 1-10 Mobile River Bridge and Bayway County: Mobile BW-110 Boring Location: 994+44.18 Offset: 19.23 RT Alignment; 1-10 Bayway No.1 DPI-0030(005) TE Project No.1 15-1101-0228 Eng/Geo.: Justin Fancher 120.0 ft Northing: 23883.4863 Easting: 1833753.01 Date Completed: 12/15/12015 120.0 ft Core Depth: 0.0 ft Date Completed: 12/15/2015 120.0 ft Date Completed: 12/15/2015 Date Completed: 12/15/2015 120.0 ft DASS Driller: Thompson Eng Groundwater. TOB 0.0 ft. Z4 HR 0.0 ft. MATERIAL DESCRIPTION 905 90	Beametries RECORD OF TEST BOOKIN* ion: 1-10 Mobile River Bridge and Bayway County: Mobile wir10 Berring Location: 894+44.18 Offset 19.23 RT Alignment I-10 Bayway a) DPI-0030(005) TE Project No.1 15-1101-0228 Eng/Geoci. Justin Fancher 20.01 Solid Depth; 120.01 County Matterial 12/14/2015 120.01 Solid Depth; 120.01 County AASHTO / ASTM Sampling Methods: AASHTO T206 8.1207 20.01 Solid Depth; 120.01 Coundwater TOBI_0.01 Date Started; 12/14/2015 20.01 Matterial DEscription Matterial Description Matterial Description Soft N VALUE Matterial Description Matterial DESCRIPTION B <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>L</th><th>_</th><th>IN</th><th>4-1010(341)</th><th>2018</th><th>26</th></t<>									L	_	IN	4-1010(341)	2018	26
BW-110 Boring Location: 894+44.18 Offset: 19.23 RT Alignment I-10 Bayway Lo. DPL-0030(005) TE Project No., 15-1101-0228 Eng./Gec.; Justin Fancher 120. 0f. Core Depth: Date Started: 12/14/2015 120. 0f. Core Depth: O. 0. Date Started: 12/14/2015 120. 0f. Core Depth: O. 0. Date Started: 12/14/2015 120. 0f. Core Depth: O. 0. Date Started: 12/14/2015 120. 0f. Core Depth: O. 0. Date Started: 18/375/2015 Iameter (In) 4-inch ASHTO / ASTM Sampling Methods: AASHTO 7206 & T207 B Iameter (In) 4-inch ASHTO / ASTM Sampling Methods: AASHTO 7206 & T207 B Iameter B MATERIAL DESCRIPTION Image Started: Image Started: Image Started: B </th <th>WI-110 Boring Location: 894-44.18 Offset: 19.23 RT Alignment: I-10 Bayway 3.] DP10030(005) TE Project No. 15-1101-0228 Eng/Geo.: Justin Fancher Northing: 128383.4683 Easting: 133375.301 Date Completed: 12/14/2015 120.0 ft. Soli Depth: 120.0 ft. Core Depth: 0.0 ft. Date Completed: 12/15/2015 Tameter (In)! 4-inch AASHTO / ASTM Sampling Methods: AASHTO T206 & 1207 </th> <th></th> <th>n</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>F</th> <th>REG</th> <th>co</th> <th>R</th> <th>O OF TES</th> <th>т во</th> <th>RIN</th>	WI-110 Boring Location: 894-44.18 Offset: 19.23 RT Alignment: I-10 Bayway 3.] DP10030(005) TE Project No. 15-1101-0228 Eng/Geo.: Justin Fancher Northing: 128383.4683 Easting: 133375.301 Date Completed: 12/14/2015 120.0 ft. Soli Depth: 120.0 ft. Core Depth: 0.0 ft. Date Completed: 12/15/2015 Tameter (In)! 4-inch AASHTO / ASTM Sampling Methods: AASHTO T206 & 1207		n						F	REG	co	R	O OF TES	т во	RIN
to. DPI-0030(005) TE Project No. 15-1101-0228 Eng./Geo.: Justin Fancher t. Northing: 23883.4863 Easting: 1833753.01 Date Started: 12/14/2015 120.0 ft. Soil Depth: 120.0 ft. Core Depth: 0.0 ft. Date Started: 12/14/2015 iameter (in): 4.inch AASHTO / ASTM Sampling Methods: AASHTO 7206 & T207 Energy Ratio: 86% I/A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: Signed SigneSigned Signed SigneSigned Signed Signed Sign	DPI-0030(005) TE Project No. 15-1101-0228 Eng/Geo.: Justin Fancher Northing: [238363.4863 Easting: 1133753.01 Date Started: [12/14/2015 120.0.f. Solid Depth: [20.0.f.] On: Depth: Date Completed: [2/14/2015 ameter (in): 44inch AASHTO / ASTM Sampling Methods: AASHTO 7206 & T207 [CME 45C Drill Method: [Manual Energy Ratic: [86%] A Driller: Thompson Eng Groundwater. TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION 9	1000 C	-			-		1			-	-			
I. Northing: 238883.4663 Easting: 1833753.01 Date Started: 12/14/2015 120.0 ft. Soli Depth: 120.0 ft. Core Depth: 0.0 ft. Date Completed: 12/15/2015 iameter (In) 4-inch AASHTO / ASTM Sampling Methods: AASHTO 7206 & T207 Energy Ratio: 86% U/A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MA Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: Started: Image: Started:<	Northing: 23883.4663 Easting: 1833753.01 Date Started: 12/14/2015 120.0 ft. [Soli Depth:] 120.0 ft. Core Depth:] 0.0 ft. Date Completed: 12/15/2015 ameter (in)] 4-inch [AASHTO / ASTM Sampling Methods:] AASHTO T206 & T207 Energy Ratio:] 86% A Drill Method: IM Hammer Type: Manual Energy Ratio:] 86% A Driller: Thompson Eng Groundwater. TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION 9 g. gl					_		-	3 R	r	1				er
ameter (in): 4-inch AASHTO / ASTM Sampling Methods: AASHTO 7206 & 7207 e: CME 45C Drill Method: MR Hammer Type: Manual Energy Ratio: 86% I/A Drill Method: MR Hammer Type: Manual Energy Ratio: 86% I/A Drill Method: MR Hammer Type: Manual Energy Ratio: 86% MA Drill Method: MR Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: Secont Sec	ameter (in): 4-inch AASHTO / ASTM Sampling Methods: AASHTO 7206 & T207 [CME 45C] Drill Method: MR Hammer Type: Manual Energy Ratio: 88% A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: Second						1			0	Date				
e: CME 45C Drill Method: MR Hammer Type: Manual Energy Ratio: 86% WA Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION groundwater: groundwater: TOB 0.0 ft. 24 HR 0.0 ft. Very loose, wet, gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, SidzOd-T1.7) 33.5 58-11 1 1 1 2.2 % A O Loose Loose, light gray Medium dense 48.5 SS-11 1 1 1 21 X A 4 Medium dense Medium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SiLT (SP-SM, SiZ CO-T1.7) SS-13 4 4 5 9 • Loose, light gray Medium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SiLT (SP-SM, SiZ CO-S) SS-11 1 1 1 21 X A • Medium dense SS-16 10 11 10 21 X A • • •	CME 45C Drill Method: MR Hammer Type: Manual Energy Ratio: 86% A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. 98% <td>the second se</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.0</td> <td></td> <td></td> <td></td> <td></td> <td>5/2015</td> <td>-</td>	the second se							1.0					5/2015	-
U/A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: Section of the sec	A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: State St	1					-	_	-	_	110	120		: 86%	-
MATERIAL DESCRIPTION Image: Second secon	MATERIAL DESCRIPTION grow grow <thgrow< th=""> grow grow<!--</td--><td>-</td><td>Driller:</td><td>Thompso</td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td>t.</td><td></td><td>24 HR 0.01</td><td>t.</td><td></td></thgrow<>	-	Driller:	Thompso		-				_	t.		24 HR 0.01	t.	
Very Mode, wet, gray, time to medium grained, A-2-4(0), LL=NP PL=NP PI=NP NMC=27.3 %#200=11.7 Loose Loose, light gray Medium dense, wet, light gray, fine to medium grained, PCORLY GRADED SAND with SLT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9	ery does, wet, gray, me to medium grando, -2-4(0), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7 58-11 1 1 1 2 3 2 5 oose 38.5 58-12 2 3 2 5 6 oose, light gray 43.5 58-13 4 4 5 9 6 48.5 58-14 7 9 13 22 6 48.5 58-14 7 9 13 22 6 48.5 58-15 10 11 10 21×A 6 66/um dense 58-16 5 4 4 8 6 67/00-53 58-16 5 4 4 8 6 68-5 58-16 5 4 4 8 6 69 68-6 5 5 4 4 8 6	MATE	RIAL DESCR	RIPTION		Graphic Log	Sample Depth (ft.)	Sample No./Type	1st 6"	2nd 6"	3rd 6*	N Value	(blov PL N X FINES CC	vs/foot) AC L ONTENT (
Very losse, wel, gight gray, time to medium graned, pose 1 1 1 1 1 2 A O A-2-4(0), LL=NP PL=NP PI=NP NMC=27.3 %#200=11.7 38.5 5 5 1 1 1 2 A O Loose 38.5 5 5 1 1 1 2 A O Loose 43.5 5 5 1 4 5 9 6 Medium dense 48.5 5 5 5 1 1 10 21X A 6 Medium dense, wet, light gray, fine to medium grained, POCILY GRADED SAND with SLT (SP-SM, A-3(0)), LL=NP PL=NP PL=NP NMC=20.9 5	ery does, wet, gray, me to medium grando, -2-4(0), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7 58-11 1 1 1 2 3 2 5 oose 38.5 58-12 2 3 2 5 6 oose, light gray 43.5 58-13 4 4 5 9 6 48.5 58-14 7 9 13 22 6 48.5 58-14 7 9 13 22 6 48.5 58-15 10 11 10 21×A 6 66/um dense 58-16 5 4 4 8 6 67/00-53 58-16 5 4 4 8 6 68-5 58-16 5 4 4 8 6 69 68-6 5 5 4 4 8 6						-								
Very Mode, Wet, Start, Time to medium graned, A-2-4(0), LL=NP PL=NP PI=NP NMC=27.3 %#200=11.7 Loose Loose, light gray Medium dense Medium dense Medium dense, wet, light gray, fine to medium graned, POCRLY GRADED SAND with SLT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9 Loose	ery does, wet, gray, me to medium grando, -2-4(0), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7 58-11 1 1 1 2 3 2 5 oose 38.5 58-12 2 3 2 5 6 oose, light gray 43.5 58-13 4 4 5 9 6 48.5 58-14 7 9 13 22 6 48.5 58-14 7 9 13 22 6 48.5 58-15 10 11 10 21×A 6 66/um dense 58-16 5 4 4 8 6 67/00-53 58-16 5 4 4 8 6 68-5 58-16 5 4 4 8 6 69 68-6 5 5 4 4 8 6														
A-2-4(0), LL=NP PL=NP PI=NP NMC=27.3 %#200=11.7 Loose Loose, light gray Medium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SLT (SP-SM, A-3(0), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9 Loose	-2-4(0), LL=NP PL=NP PI=NP NMC=27.3 coose coose coose coose coose, light gray Aedium dense, wet, light gray, fine to medium rained, POCRV GRADED SAND with SILT SP-SM, A-3(0), LL=NP PL=NP PI=NP NMC=20.9 SS-16 5 63.5 SS-16 5 65.5 SS-16 5 66.5 SS-16 5 6700-53 SS-16 5 0058 DRILLING METHOD NAMPLER TYPE DRILLING METHOD NG - Grab Bag SSA - Hollow Stem Augers MR - Mud Rotary Wash SSA Solid Stem Augers MR - Nud Rotary Wash	POORLY GRADE	D SAND with	SILT (SP-S	M,		33.5	SS-11	1	1	1	23			
Loose iss-12 2 3 2 5 • Loose, light gray 43.5 SS-13 4 4 5 9 • 43.5 SS-13 4 4 5 9 • 48.5 SS-14 7 9 13 22 • Medium dense, wet, light gray, fine to medium grained, POCRLY (GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21×4 • SM=200=5 9 SS	coose iss-12 2 3 2 5 • oose, light gray 43.5 iss-13 4 4 5 9 • Aedium dense 48.5 iss-13 4 4 5 9 • Aedium dense 48.5 iss-14 7 9 13 22 • Aedium dense iss-15 10 11 10 21×A • SP-SM, A-3(0), LI=NP PI=NP NMC=20.9 iss-15 iss-16 5 4 4 8 oose iss-16 5 4 4 8 • • iss-Sin 5 5 4 4 8 • • • iss-Sin 5 4 4 8 • • • • iss-Sin 5 5 4 4 8 • • • • iss-Sin 6 5 5 4 4 8 • • • iss-Sin 6 5 5 4 4 8 • • • <td>A-2-4(0)), LL=NP</td> <td>PL=NP PI=NI</td> <td>P NMC=27.3</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	A-2-4(0)), LL=NP	PL=NP PI=NI	P NMC=27.3	3										-
Loose Loose, light gray Medium dense, wet, light gray, fine to medium grained, POCRLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PL=NP NMC=20.9 %#200=5.9	coose iss-12 2 3 2 5 • oose, light gray 43.5 iss-13 4 4 5 9 • Aedium dense 48.5 iss-13 4 4 5 9 • Aedium dense 48.5 iss-14 7 9 13 22 • Aedium dense iss-15 10 11 10 21×A • SP-SM, A-3(0), LI=NP PI=NP NMC=20.9 iss-15 iss-16 5 4 4 8 oose iss-16 5 4 4 8 • • iss-Sin 5 5 4 4 8 • • • iss-Sin 5 4 4 8 • • • • iss-Sin 5 5 4 4 8 • • • • iss-Sin 6 5 5 4 4 8 • • • iss-Sin 6 5 5 4 4 8 • • • <td></td>														
Loose, light gray Medium dense Medium dense, wet, light gray, fine to medium grained, POCRLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-12 2 SS-13 4 4 5 9 Medium dense 53.5 55-13 4 4 5 9 Medium dense 53.5 55-14 7 9 13 22 • 53.5 55-15 10 11 10 21×A • 53.5 55-15 10 11 10 21×A • 58.5 5 5 5 5 5 5 5	oose, light gray 43.5 58.12 2 3 2 5 6 Aedium dense 43.5 58.13 4 4 5 9 6 Aedium dense 48.5 58.13 4 4 5 9 6 Aedium dense, wet, light gray, fine to medium rained, POCRLY GRADED SAND with SLT 58.51 10 11 10 21X A 6 58.5 58.515 10 11 10 21X A 6 6 58.5 58.516 5 4 4 8 6 6 DELLING METHOD AC - Auger Cuttings DRILLING METHOD MR - Mud Rotary Wash RC - Augers MR - Mud Rotary Wash RC - Roko Coring	Loose					38.5	-			-	-			-
Loose, light gray SS-13 4 4 5 9 48.5 SS-14 7 9 13 22 33.5 SS-14 7 9 13 22 53.5 SS-15 10 11 10 21×A SS-15 10 11 10 21×A 58.5 I once SS-15 10 11 10 21×A SS-15 58.5 	Aedium dense 48.5 9 • Aedium dense 48.5 SS-13 4 4 5 9 • Aedium dense 48.5 SS-14 7 9 13 22 • Aedium dense, wet, light gray, fine to medium rained, POCRY GRADED SAND with SILT SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 53.5 SS-15 10 11 10 21×A • 68.5 SS-16 5 4 4 8 • LEGEND DRILLING METHOD HSA - Hollow Stem Augers MR - Mud Rotary Wash RC - Rock Coring SAMPLER TYPE n AC - Auger Cuttings SSA - Sold Stem Augers MR - Mud Rotary Wash RC - Rock Coring						-	SS-12	2	3	2	5	•	1 3 1	-
Loose, light gray SS-13 4 4 5 9 48.5 SS-14 7 9 13 22 33.5 SS-14 7 9 13 22 53.5 SS-15 10 11 10 21×A SS-15 10 11 10 21×A 58.5 I once SS-15 10 11 10 21×A SS-15 58.5 	Aedium dense 48.5 9 • Aedium dense 48.5 SS-13 4 4 5 9 • Aedium dense 48.5 SS-14 7 9 13 22 • Aedium dense, wet, light gray, fine to medium rained, POCRY GRADED SAND with SILT SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 53.5 SS-15 10 11 10 21×A • 68.5 SS-16 5 4 4 8 • LEGEND DRILLING METHOD HSA - Hollow Stem Augers MR - Mud Rotary Wash RC - Rock Coring SAMPLER TYPE n AC - Auger Cuttings SSA - Sold Stem Augers MR - Mud Rotary Wash RC - Rock Coring														
Loose, light gray SS-13 4 4 5 9 48.5 SS-14 7 9 13 22 33.5 SS-14 7 9 13 22 53.5 SS-15 10 11 10 21×A 58.5 58.5 	Aedium dense 48.5 9 • Aedium dense 48.5 SS-13 4 4 5 9 • Aedium dense 48.5 SS-14 7 9 13 22 • Aedium dense, wet, light gray, fine to medium rained, POCRY GRADED SAND with SILT SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 53.5 SS-15 10 11 10 21×A • 68.5 SS-16 5 4 4 8 • LEGEND DRILLING METHOD HSA - Hollow Stem Augers MR - Mud Rotary Wash RC - Rock Coring SAMPLER TYPE n AC - Auger Cuttings SSA - Sold Stem Augers MR - Mud Rotary Wash RC - Rock Coring							1							
Medium dense SS-14 7 9 13 22 • Medium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21X A • SMEdium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21X A • SMEdium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21X A • SMEdium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21X A • SMEdium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21X A • SMEdium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21X A •	Aedium dense Aedium dense SS-14 7 9 13 22 • Aedium dense, wet, light gray, fine to medium trained, POCRLY GRADED SAND with SLT SS-15 10 11 10 21 × ▲ • SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 58.5 SS-16 5 4 4 • .coose	Loose, light gray					43.5	SS-13	4	4	5	9			
Medium dense SS-14 7 9 13 22 • Medium dense, wet, light gray, fine to medium grained, POCRLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 SS-15 10 11 10 21X A • SS=5 9	Aedium dense Aedium dense SS-14 7 9 13 22 • Aedium dense, wet, light gray, fine to medium trained, POCRLY GRADED SAND with SLT SS-15 10 11 10 21 × ▲ • SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 58.5 SS-16 5 4 4 • .coose						-			-	-				1
Medium dense Wedium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9 0 58.5	Aedium dense Aedium dense SS-14 7 9 13 22 • Aedium dense, wet, light gray, fine to medium trained, POCRLY GRADED SAND with SLT SS-15 10 11 10 21 × ▲ • SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 58.5 SS-16 5 4 4 • .coose							-							
Medium dense, wet, light gray, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP NMC=20.9 53.5 58.15 10 11 10 21X ▲ 58.5 58.5 58.5 58.5 58.5	Aedium dense, wet, light gray, fine to medium rained, POORLY GRADED SAND with SILT SP-SM, A3(0), LL=NP PL=NP PI=NP NMC=20.9 6#200=5.9 .cose LEGEND SAMPLER TYPE n AC - Auger Cuttings be GB - Grab Bag SAMPLER TYPE n AC - Auger Cuttings be GB - Grab Bag SAMPLER TYPE n AC - Auger Cuttings be GB - Grab Bag SA - Solid Stem Augers RC - Rock Coring	Medium dance					48.5				_	-			
Meduum dense, wet, light gray, me to medium grained, POCRLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9	Interland POCRUY GRADE IN BILT SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 Image: SS-15 10 11 10 21×A 6#200=5.9 Image: SS-16 5 4 4 Image: SS-16 5 4 8 0:0056 Image: SS-16 5 4 4 8 Image: SS-16 5 4 8 LEGEND DRILLING METHOD N AC - Auger Cuttings HSA - Hollow Stem Augers MR - Mud Rotary Wash See GB - Grab Bag SSA - Solid Stem Augers RC - Rock Coring	medium dense					-	SS-14	7	9	13	22	•		11
Medulum dense, wet, light gray, me to medium grained, POCRLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9	Intermedium beinse, wei, light gray, line to medium rained, POCRY GRADE DS SAND with SILT SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 6#200=5.9 .coose LEGEND SAMPLER TYPE n AC - Auger Cuttings GB - Grab Bag SSA- Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers							-							
Meduum dense, wet, light gray, me to medium grained, POCRLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9	Intermedium beinse, wei, light gray, line to medium rained, POCRY GRADE DS SAND with SILT SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 6#200=5.9 .coose LEGEND SAMPLER TYPE n AC - Auger Cuttings GB - Grab Bag SSA- Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers							1							
(SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 %#200=5.9 68.5	SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=20.9 6#200=5.9 .cose LEGEND SAMPLER TYPE n AC - Auger Cuttings be GB - Grab Bag SSA - Solid Stem Augers SSA - Solid Stem Augers SSA - Solid Stem Augers RC - Rock Coring	Medium dense, w	et, light gray,	fine to medi AND with SI	um		53.5	SS-15	10	11	10	21)			
	AC - Auger Cuttings Be GB - Grab Bag SSA - Solid Stem Augers RC - Rock Coring	(SP-SM, A-3(0)), I					-			-		-			
	AC - Auger Cuttings Be GB - Grab Bag SSA - Solid Stem Augers RC - Rock Coring							-							
SS-16 5 4 4 8 •	SS-16 5 4 4 8 LEGEND DRILLING METHOD n AC - Auger Cuttings HSA - Hollow Stern Augers MR - Mud Rotary Wash be GB - Grab Bag SSA - Solid Stern Augers RC - Rock Coring	Loose					58.5	-	-	-	_	-		0.00	
	SAMPLER TYPE DRILLING METHOD n AC - Auger Cuttings HSA - Hollow Stem Augers MR - Mud Rotary Wash be GB - Grab Bag SSA - Solid Stem Augers RC - Rock Coring							SS-16	5	4	4	8	•		1
LEGEND	SAMPLER TYPE DRILLING METHOD n AC - Auger Cuttings HSA - Hollow Stem Augers MR - Mud Rotary Wash be GB - Grab Bag SSA - Solid Stem Augers RC - Rock Coring					LEGE	ND								
SAMPLER TYPE DRILLING METHOD on AC - Auger Cuttings HSA - Hollow Stem Augers MR - Mud Rotary Wash ube GB - Grab Bag SSA - Solid Stem Augers RC - Rock Coring	Cone Feileironieter ING - Kock Core MA - Hand Auger	on ube	AC - A GB - G	Grab Bag	s		HS	A - Solid	Ster	em A n Aug	ugers	5	MR - Mud F	Rotary Wa Coring	ish
ic Cone Penetrometer NQ - Rock Core HA - Hand Auger			eter NQ - R	Rock Core											
		F	Alaba	mal	Dep	art	me	ent	of	Т	ra	in	sportat	ion	
Alabama Department of Transportation	Alabama Department of Transportation	Bridge Sh	eet d	of											
Alabama Department of Transportation			297	ENGINE 0 COTTA	ERING GE HIL	L RD.		I-10 I		BILE	ERI	VE	R BRIDGE BRAM		
	Bridge Sheet of PROJECT NO. 17-1101-0145 I-10 MOBILE RIVER BRIDGE LOAD TEST PROGRAM MOBILE COLUMN	APPROVED	D: SAM	STERNE	BERG	PE									
Bridge Sheet of Thompson ENGINEERING 2970 COTTAGE HILL RD. MOBILE, AL 36606 PROJECT NO. 17-1101-0145 I-10 MOBILE RIVER BRIDGE LOAD TEST PROGRAM MOBILE COUNTY, ALABAMA	Bridge Sheet of Thompson ENGINEERING 2970 COTTAGE HILL RD. MOBILE, AL 36606 PROJECT NO. 17-1101-0145 I-10 MOBILE RIVER BRIDGE LOAD TEST PROGRAM MOBILE COUNTY, ALABAMA		SAN	OTERINE	ENG III	P.E.	-	_	-			-	ete et bles		
Bridge Sheet of Engineering PROJECT NO. 17-1101-0145 2970 COTTAGE HILL RD. PROBILE RIVER BRIDGE MOBILE, AL 36606 DOBILE COUNTY, ALABAMA	Bridge Sheet of Image: Sheet PROJECT NO. 17-1101-0145 Image: Sheet PROJECT NO. 17-1101-0145 Image: Sheet Provential Sheet Image: Sheet	-	EOTECH		GINEED				Ph	elim	inar	y Pr	OJECT NO:		
Bridge Sheet of Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Sheet Image: Sheet Image: Sheet Image: Sheet Image: Sheet Im	Bridge Sheet of Image: Sheet Provention Image: Sheet Provention <td></td> <td>BEOTECH</td> <td>NICAL EN</td> <td>GINEER</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td>_</td> <td>_</td> <td></td> <td>COP</td> <td>D</td>		BEOTECH	NICAL EN	GINEER		-	-			_	_		COP	D

(THIS SPECIAL PROJECT DRAWING FOR USE ON PROJECT NO. MH-1010(341)

GENERAL NOTES

YEAR NUMBE

PROJECT NUMBER

CONCRETE: THE CONTRACTOR SHALL DESIGN AND SUBMIT FOR APPROVAL A CONCRETE MIX WITH MINIMUM COMPRESSIVE CYLINDER STRENGTH OF 5,000 P.S.L AT 28 DAYS UNLESS SHOWN OTHERWISE ON THE CONTRACT DRAWINGS, CONCRETE STRENGTH AT TIME OF TRANSFER OF PRESTRESSING FORCE SHALL BE 4,000 P.S.L OR GREATER, CEMENT SHALL BE TYPE II EXCEPT WHEN OTHERWISE NOTED ON THE CONTRACT DRAWINGS, SPECIFICATIONS, OR SPECIAL PROVISIONS.

PRESTRESSING STEEL: STRESSING CABLE SHALL BE 1/2" DIA., SEVEN WIRE, UNCOATED, STRESS-RELIEVED OR LOW RELAXATION, GRADE 270, AND SHALL CONFORM TO THE REQUIREMENTS OF AGSHTO M 203. AN INITIAL TENSION OF 28,910 LBS. SHALL BE APPLIED TO EACH STRESS-RELIEVED TYPE STRAND, AND AN INITIAL TENSION OF 30,975 LBS. SHALL BE APPLIED TO EACH LOW-RELAXATION TYPE STRAND.

REINFORCING BARS; REINFORCING STEEL SHALL BE DEFORMED BILLET STEEL BARS, GRADE 60 AND SHALL MEET THE REQUIREMENTS OF AASHTO-M31.

SPIRAL REINFORCING STEEL SPIRAL REINFORCEMENT SHALL BE SIZE W5(MIN.) COLD-DRAWN STEEL WIRE AND SHALL CONFORM TO AASHTO M-32.

FABRICATION TOLERANCES: MANUFACTURE OF THE PILING AND FABRICATION TOLERANCES SHALL BE IN ACCORDANCE WITH THE STANDARD SPECIFICATIONS. THE DETENSIONING PROCEDURE SHALL BE SUBMITTED TO THE BRIDGE ENGINEER FOR APPROVAL.

CHAMFERS AND CORNERS, ON PILES 18" OR SMALLER, ALL EXPOSED CONCRETE CORNERS ARE TO HAVE "4" CHAMFERS.ON PILES 20" OR LARGER, ALL EXPOSED CONCRETE CORNERS ARE TO HAVE 11/2" CHAMFER. A 1" RAD. CLRVE WILL BE PERMITTED IN LIEU OF CHAMFERS SHOWN ABOVE. HOWEVER, ALL BENT PILES FURNISHED SHALL BE OF SAME CONFIGURATION.

PICK-UP AND HANDLING: MAXIMUM LENGTHS FOR PICK-UP HAVE BEEN DETERMINED USING THE FOLLOWING STRESS ASSUMPTIONS:

LOADING: 1½ TIMES FULL DEAD LOAD. ALLOWABLE TENSILE STRESS EDUALS $5\sqrt{-PC}$ PSI. THIS STRESS AND LOADING CRITERIA ARE BASED ON CAREFUL HANDLING OF THE PILE. ROTATION OF PILE IN THE SLING IS TO BE PREVENTED UNTIL PILE IS IN VERTICAL POSITION PICK-UP POINTS FOR ALL PILES TO BE CLEARLY MARKED ON PILE. PICK-UP POINTS SHOWN MAY BE MODIFIED FOR TRANSPORTATION PURPOSES PROVIDED THE TENSILE STRESS BASED ON ABOVE LOADING CRITERIA DOES NOT EXCEED $5\sqrt{PC}$ PSI. THE MODIFIED PICK-UP POINTS SHALL BE SENT TO THE BRIDGE DESIGN ENGINEER FOR REVIEW.

PICK-UP DEVICES: CAST-IN-PLACE LOOPS MAY BE USED AS PICK-UP DEVICES FOR PRESTRESSED PILES. FOR PILE ABUTMENTS AND FOR PILE FOOTINGS THAT ARE TO BE CONSTRUCTED BELOW GROUNDLINE, THE FOLLOWING SHALL APPLY: THE LOOPS SHALL BE CUT TOF FLUSH WITH FACE OF THE PILE AND EXPOSED SURFACES OF THE LOOPS SHALL BE COATED WITH AN APPROVED EPOXY. FOR PILE BENTS AND FOR PILE FOOTINGS THAT ARE TO BE CONSTRUCTED ABOVE POOL WATERLINE., THE FOLLOWING SHALL APPLY A 3'X3' BY 1½'' DEEP RECESS (BLOCKOUT) SHALL BE PROVIDED AT EACH LOOPS SHALL BE CUT TOF FLUSH WITH THE RECESSED FOR PROTEIDED SURFACE OF THE PILE AND THE RECESS SHALL BE FILLED WITH AN APPROVED EPOXY. THE FOLLOWING SHALL APPLY A 3'X3'' BY 1½'' DEEP RECESS (BLOCKOUT) SHALL BE PROVIDED AT EACH LOOP STATL BE CUT TOF FLUSH WITH THE RECESSED FOR FOR THE PILE AND THE RECESS SHALL BE FILLED WITH AN APPROVED EPOXY. THE EPOXY SHALL OBTAIN THE 28-DAY STRENGTH SPECIFIED FOR THE PILE PRIOR TO DRIVING THE PILE. THE TYPE OF PICK-UP DEVICE TO BE USED BY THE CONTRACTOR SHALL BE CLEARLY SHOWN ON THE PRESTRESSED CONCRETE PILE SHOP DRAWINGS.

SHIPPING: PILING SHALL BE HELD AT THE PLANT FOR A MINIMUM OF 21 DAYS PRIOR TO SHIPPING. PILING SHALL NOT BE TRANSPORTED UNTIL THE MINIMUM 28 DAY COMPRESSIVE CONCRETE STRENGTH IS OBTAINED AND VERIFIED BY TEST CYLINDERS.

<u>DRIVING:</u> PILES SHALL BE DRIVEN TO AT LEAST THE MINIMUM TIP ELEVATION AS SHOWN ON CONTRACT PLANS UNLESS OTHERWISE DIRECTED BY THE ENGINEER.

PILE HEAD ATTACHMENT: PROVISION SHALL BE MADE FOR PILE HEAD ATTACHMENT BY STRAND EXTENSION OR DOWEL BAR EXTENSION (SEE DETAIL, THIS SHEET) FOR BENT CAPS, ABUTMENT CAPS, AND FOR PILE FOOTINGS WHENEVER FOOTINGS ARE TO BE CONSTRUCTED ABOVE POOL (WATERLINE). THE CONTRACTOR'S PROPORED METHOD OF PILE HEAD ATTACHMENT SHALL BE CLEARLY SHOWN ON THE PRESTRESSED CONCRETE PILE SHOP DRAWINGS, A PILE HEAD ATTACHMENT IS NOT REQUIRED FOR PILES IN FOOTINGS TO BE CONSTRUCTED BELOW GROUNDLINE.

BUILD-UP: THE USE OF A BUILD-UP (DRIVING OR NON-DRIVING) SHALL BE SUBJECT TO APPROVAL OF THE BRIDGE ENGINEER, SUBMIT DETAILS TO THE BRIDGE ENGINEER, CONCRETE SHALL BE THE SAME JOB MIX AS THE PRESTRESS CONCRETE,

VETTING OF PILES JETTING OF PRESTRESSED CONCRETE PILES IS PERMISSIBLE SUBJECT TO SATISFYING THE CONDITIONS STATED IN ARTICLE 505.03(c)2 OF THE STANDARD SPECIFICATIONS, REFERENCE THIS ARTICLE OF THE SPECIFICATIONS FOR JET TUBE INSTALLATION REQUIREMENTS.

ESSED PART- UTIVE NYONE DRAWINGS EXTENT		t orawing to be used ollowing standards SIONS	PRECAS	IAL PROJECT DRAWING T PRESTRESSED CRETE PILES -24-30 & 36 INCHES SPECIAL PROJ. DWG. NO.
			COMPUTED BY: VERIFIED BY:	PSCP-1
-	CHECKED BY:	DRAWN BY: K.R.T.	DESIGNED BY:	FSCF-1
-	DATE CHECKED-19-04	DATE DRAWN: 11-20-91	SCALC.	SHEET NO. 1 OF 1

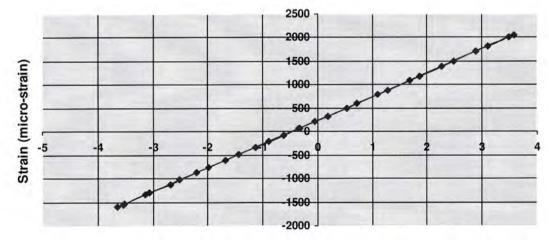
Appendix F

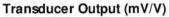
Instrument Calibrations TP-23C

I-10 over Mobile River Bridge Load Test Program ALDOT Project No.: IM-I010(341)

DOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

Certificate of Calibration


Transducer Model: BDI ST350


Serial Number: P454 PDI Gage Factor: 145.3 με/V

General Gage Factor: 504.7 $\mu\epsilon/mV/V_{ext}$ Initial Offset Voltage: -0.113 mV/V_{ext}

Applied Strain (µE)	Transducer Output (mV/Vext)	Applied Strain (µE)	Transducer Output (mV/Vext)
65	-0.330	335	0.184
-83	-0.628	598	0.709
-331	-1.125	889	1.284
-607	-1.670	1188	1.872
-876	-2.202	1497	2.487
-1115	-2.687	1814	3.109
-1344	-3.136	2058	3.573
-1543	-3.541	2013	3.492
-1597	-3.646	1700	2.888
-1525	-3.515	1387	2.272
-1288	-3.058	1088	1.683
-1023	-2.521	794	1.100
-753	-1.982	502	0.529
-483	-1.439	210	-0.047
-210	-0.893	71	-0.319
70	-0.337	70	-0.321

Calibration Curve

Mean Linear Correlation Coefficient (LCC): 9.999805E-1

Calibrated By: Vanna Thach

Date/Time: 1/26/2018 8:12 AM

LCC Standard Deviation: 1.224288E-6

hack Signature: C

Temperature (°C): 24.3

Specifications

PDI Automated Strain Transducer Calibration System (PDI-ASTCS)

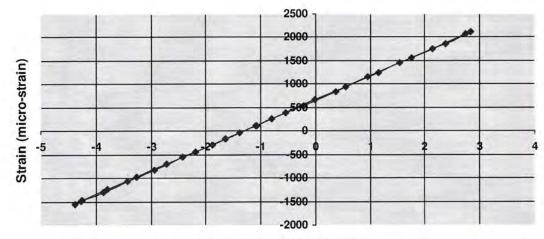
ASTCS Ca	libration Information
ASTCS Serial Number:	ASTCS-0005
ASTCS Software Version:	2.310
ASTCS Independent Verification Date:	11/5/2014 11:54 AM
Strain Transducer Gage Length:	3.0 inches (76.2 mm)
Applied Full Scale Displacement Range:	±7.500000E-3 inches
Method for Applying Displacement:	Precision Step Motor Coupled to Linear Stage
Excitation Voltage for Calibration:	2.5 VDC
Displacement Measurements:	Dual Precision AC LVDT's, Output Averaged
Displacement Certification:	NIST 274437-07
Linearity Verification Technique:	Linear Correlation Coefficient > 0.9999
Repeatability Verification Technique:	Standard Deviation < 0.5 % (of mean)
ASTO	CS System Check
Reference Strain Transducer:	4367T
Reference General Gage Factor:	293.000 με/mV/V
LVDT #1 Sensitivity (inches/volt):	7.916500E-3
LVDT #2 Sensitivity (inches/volt):	8.042000E-3
Date/Time of Last System Check:	1/26/2018 7:12 AM
PDI Strain T	Fransducer Connections
Black:	+ Excitation
Green:	- Excitation
Red:	+ Signal
White:	- Signal
Grey:/BARE	Shield

NIST Reference:

PDI certifies the above PDI-ASTCS instrument meets or exceeds published specifications and has been verified using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology (NIST), an accepted value of a natural physical constant or a ratio calibration technique. The calibration of this instrument was performed in accordance with the PDI Quality Assurance program. Measurements and information provided on this report are valid at the time of calibration only.

Certificate of Calibration

Transducer Model: BDI ST350


Serial Number: P455 PDI Gage Factor: 145.8 με/V

General Gage Factor: 506.2 $\mu\epsilon/mV/V_{ext}$ Initial Offset Voltage: -0.434 mV/V_{ext}

.

Applied Strain (µE)	Transducer Output (mV/Vext)	Applied Strain (µɛ)	Transducer Output (mV/Vext)
110	-1.082	389	-0.551
-42	-1.386	657	-0.021
-288	-1.881	947	0.552
-560	-2.418	1246	1.143
-828	-2.945	1556	1.751
-1070	-3.431	1869	2.371
-1290	-3.866	2115	2.834
-1489	-4.264	2069	2.749
-1547	-4.375	1752	2.143
-1473	-4.243	1446	1.542
-1238	-3.788	1147	0.958
-976	-3.260	845	0.360
-707	-2.726	548	-0.218
-440	-2.191	255	-0.796
-163	-1.641	114	-1.075
118	-1.086	114	-1.076

Calibration Curve

Transducer Output (mV/V)

Mean Linear Correlation Coefficient (LCC): 9.999817E-1

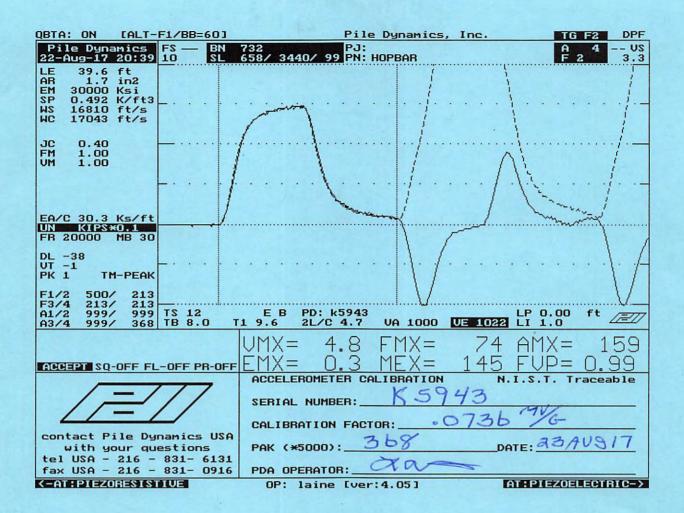
Calibrated By: Vanna Thach

Date/Time: 1/26/2018 7:26 AM

LCC Standard Deviation: 3.891526E-7

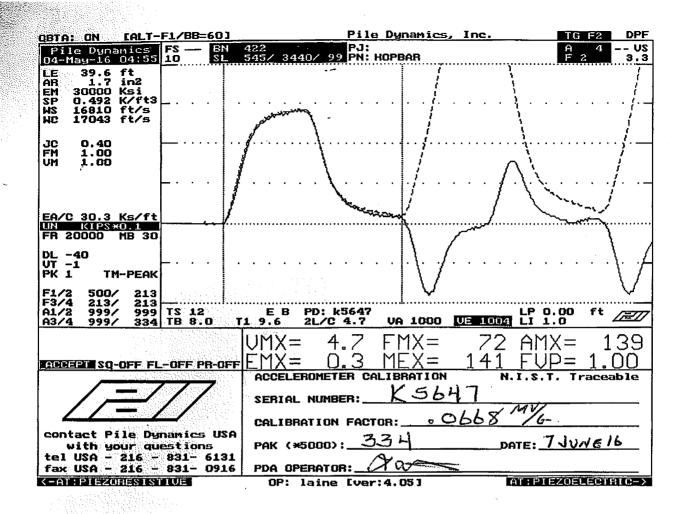
Signature: Much

Temperature (°C): 23.6


Specifications

PDI Automated Strain Transducer Calibration System (PDI-ASTCS)

ASTCS Ca	libration Information
ASTCS Serial Number:	ASTCS-0005
ASTCS Software Version:	2.310
ASTCS Independent Verification Date:	11/5/2014 11:54 AM
Strain Transducer Gage Length:	3.0 inches (76.2 mm)
Applied Full Scale Displacement Range:	±7.500000E-3 inches
Method for Applying Displacement:	Precision Step Motor Coupled to Linear Stage
Excitation Voltage for Calibration:	2.5 VDC
Displacement Measurements:	Dual Precision AC LVDT's, Output Averaged
Displacement Certification:	NIST 274437-07
Linearity Verification Technique:	Linear Correlation Coefficient > 0.9999
Repeatability Verification Technique:	Standard Deviation < 0.5 % (of mean)
ASTO	CS System Check
Reference Strain Transducer:	4367T
Reference General Gage Factor:	293.000 με/mV/V
LVDT #1 Sensitivity (inches/volt):	7.916500E-3
LVDT #2 Sensitivity (inches/volt):	8.042000E-3
Date/Time of Last System Check:	1/26/2018 7:12 AM
PDI Strain T	Fransducer Connections
Black:	+ Excitation
Green:	- Excitation
Red:	+ Signal
White:	- Signal
Grey:/BARE	Shield


NIST Reference:

PDI certifies the above PDI-ASTCS instrument meets or exceeds published specifications and has been verified using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology (NIST), an accepted value of a natural physical constant or a ratio calibration technique. The calibration of this instrument was performed in accordance with the PDI Quality Assurance program. Measurements and information provided on this report are valid at the time of calibration only.

Smart Sensor

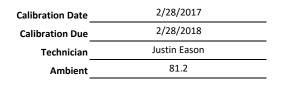
Smart Chip Programmed By A. M. V. on 23 AVS17 CRC Value BADD

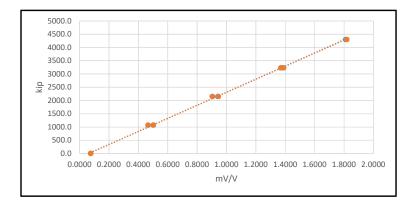
Smart Sensor

Smart Chip Programmed By X. M. W. on Thung 16 CRC Value 3435

Applied Foundation Testing, Inc.

4035 J. Louis Street Green Cove Springs, Fl 32043 P: (904) 284-1337 F: (904) 284-1339


Force Transducer Calibration Report


19MN Kelk Load Cell

C3929-1

15

kip

Calibrating Equipment							
Item Description Serial							
Pressure Gauge	20000 PSIG	1659929					
Load Reference	40MN	C027-12					
Data Acquisition	NI 9219	1A4225C					

4300

Description

Serial Number

Model

Range

	Load Cycle 1			Load Cycle 2		
Load Reference (kip)	Found As (mV/V)	Left As (mV/V)	Load Reference (kip)	Found As (mV/V)	Left As (mV/V)	Nonlinearity (%)
0.0	0.0751	0.0751	0.0	0.0750	0.0750	0.78%
1070.0	0.5013	0.5013	1070.0	0.5035	0.5035	0.38%
2150.0	0.9404	0.9404	2150.0	0.9448	0.9448	0.48%
3230.0	1.3800	1.3800	3230.0	1.3900	1.3900	0.71%
4300.0	1.8100	1.8100	4300.0	1.8200	1.8200	0.46%
3230.0	1.3700	1.3700	3230.0	1.3700	1.3700	-0.15%
2150.0	0.9045	0.9045	2150.0	0.9029	0.9029	-1.75%
1070.0	0.4655	0.4655	1070.0	0.4658	0.4658	-1.72%
0.0	0.0750	0.0750	0.0	0.0756	0.0756	0.80%

Comments:

Linear Gage Factor 2463.2948 kip/mV/V **Regression Zero** -151.1177 kip -1.75% **Maximum Nonlinearity** Sensitivity 1.7456 mV/V

Applied Foundation Testing, Inc. hereby certifies that this instrument meets or exceeds all requirements for its intended use and the reported calibration factors are accurate to within the limits of the calibrating procedure. Reference standards and calibrations are traceable to the National Institute of Standards and Technology (NIST) where applicable.

Technician:

Approved:

Model Numb	er: 3'	701G2FA50G			
Serial Number: 3795		3795			
Description:	DC Acc	elerometer			
Manufacturer:		РСВ	Method: Back	-to-Back Comparison	AT401-12
San	sitivity @ 100 Hz	Calibration			UDC
Sens	sitivity @ 100 Hz	59.9 mV/g (6.10 mV/m/s ²)	Offset Volta		mVDC 59 kHz
		(0.10 m v/m/s-)	Resonant	Frequency 1.3	99 KHZ
		Sensitivi	ty Plat		
3.0-	Temperature: 72 °F (umidity: 41 %	
2.0-					
1.0-					-
IB 0.0-				*	
-1.0-					
-2.0-					
-3.0-					
0.5 Hz	1.0	10.0		100.0	450.0
		Data Pa			
Frequency (I		Frequency (Hz)		Frequency (Hz)	Dev. (%
0.5	-0.3	10	0.1	70	0.1
1	-0.6	15	0.1	REF. FREQ.	0.0
2	0.0	20	0.0	200	0.5
5	0.0	30	0.1	450	3.9
7	0.0	50	0.1		
Acceleration Level (pk)	bration Fixture w/Silicone Grease Fastene pt: 1.00 g (9.81 m/s ²) 1 may be limited by shaker displacement a	r: Stud Fixture Orientation: Verucal t low frequencies. If the listed level cannot be obtai	ned, the calibration system uses the followin	g formula to set the vibration amplitude; Accele	eration Level
(g) = 0.207 x (freq) ² .	The gravitational constant used for calculati	ons by the calibration system is: $1 g = 9.80665 \text{ m/s}^2$. Condition	of Unit		
As Found:	In Tolerance	Conumon	oj onu		
As Left:	In Tolerance				
		Note			
		r more of the following; PT oduced, except in full, with			
		pliance with ISO 10012-1, A			
	• • • • • • • • • • • • • • • • • • • •	n Sheet for a detailed listing			
		ne test uncertainty ratio is 3: v ranges tested during calibr			
	Iz; +/- 1.5%, 200-1 kI		ation are as follows. 0.5	-0.99 HZ, +/- 1.870, 1-30	ΠZ, +/- 1.070,
Technician:		Ronald Stevens (4270)) Da	te: 1/25/201	8
		A			
		™PCB PIF7	INTONNICC		

Model Number:	3701G2FA50G		
Serial Number:	3795		
Description:	DC Accelerometer		
Manufacturer:	РСВ	Method: Back-to-	Back Comparison AT401-12
Sensitiv	<i>Cal</i> vity @ 100 Hz 59.9 mV/g	libration Data (6.10 mV Phase Plot	//m/s²)
120.0-		Thuse Fiol	
100.0-			
50.0-			
Degrees			
0.0-			*
-50.0-			
-100.0-			
-120.0- Hz 0.5	1.0	10.0	100.0 450.0
ΠZ			
		Data Points	
Frequency (Hz)	Phase (°)	Frequency (I	
0.5	-0.6	30	-1.3
1	-0.2	50	-2.0
2	-0.2	70	-2.8
2	-0.2	70	-2.0
5	-0.3	REF. FREC	Q4.0
7	-0.3	200	-7.3
		200	
10	-0.5	450	-16.4
15	-0.7		
20	-0.9		
		Notes	
 2. This certificat 3. Calibration is 4. See Manufact 5. Measurement are as follows: 0 	traceable to one or more of the follow the shall not be reproduced, except in fur- performed in compliance with ISO 10 urer's Specification Sheet for a detaile uncertainty (95% confidence level with 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1	ving; PTB 10065, PTB 10066 and N ull, without written approval from P 0012-1, ANSI Z540.3 and ISO 1702 ed listing of performance specification th coverage factor of 2) for frequence 1.0%, 30.01-199 Hz; +/- 1.5%, 200	CB Piezotronics, Inc. 5. ons. cy ranges tested during calibration -1 kHz; +/- 3.0%.
Technician:	Ronald Stevens	4270 Date:	1/25/2018
	<i>[®]PCB</i>	PIEZOTRONICS	
	3425 Walden Ave		

odel Numbe	er:3	701G2FA50G			
rial Numbe	per: 7984				
escription:	DC Acc	elerometer			
anufacturer: PCB		Method: Back	-to-Back Comparison	AT401-12	
		Calibrat	ion Data		
Sens	sitivity @ 100 Hz	60.9 mV/g	Offset Volta	age (@ 0 g) 3.3	mVDC
		(6.21 mV/m/s ²)	Resonant	Frequency 1.5	53 kHz
		Sensiti	ivity Plot		
3.0-	Temperature: 71 °F		C. 1.	fumidity: 42 %	1
2.0-					
1.0-					
3 0.0-				×	
-1.0-					
-2.0-					
0.5	1.0	10.	0	100.0	450.0
			Points		
Frequency (I 0.5	Hz) Dev. (%) 0.5	Frequency (H 10	Hz) Dev. (%) 0.0	Frequency (Hz) 70	Dev. (%) 0.1
0.5	0.1	15	0.0	REF. FREQ.	0.0
2	0.0	20	0.1	200	0.2
5	0.1	30	0.1	450	2.5
7	0.1	50	0.1		
Acceleration Level (pk) 'The acceleration leve	I may be limited by shaker displacement	at low frequencies. If the listed level cannot be	obtained, the calibration system uses the following	ng formula to set the vibration amplitude; Accel	eration Level
(g) = 0.207 x (freq) ² .	The gravitational constant used for calcula	tions by the calibration system is; 1 g = 9.80665 n Conditio	vs. on of Unit		
As Found:	In Tolerance		eren i sere		
As Left:	In Tolerance	N	otas		
I. Calibratic	on is traceable to one of		<i>otes</i> PTB 10065, PTB 10066 ar	nd NIST 683/283498.	
2. This certi	ficate shall not be rep	roduced, except in full, w	ithout written approval fro	m PCB Piezotronics, Inc.	
4 See Manu	ifacturer's Specification	on Sheet for a detailed list	1, ANSI Z540.3 and ISO 1 ing of performance specifi	cations.	
5. Due to sta	ate of art limitations, t	he test uncertainty ratio is	3:1. Measurement uncert	ainty (95% confidence lev	vel with
			ibration are as follows: 0.5	5-0.99 Hz; +/- 1.8%, 1-30	Hz; +/- 1.0%
30.01-199 F Fechnician:	łz; +/- 1.5%, 200-1 k	Ronald Stevens R	S 70 Da	te: 1/25/201	19
		Ronald Stevens 42	Da	te: <u>1/25/201</u>	10

ACS-11

Model Number:	3701G2FA50G	_		
Serial Number:	7984			
Description:	DC Accelerometer			
Manufacturer:	РСВ	Method: Back-	to-Back Comparise	on AT401-12
Sensitivity	@ 100 Hz 60.9 mV/g	ration Data (6.21 1 hase Plot	nV/m/s²)	
120.0-	1			
100.0-				
50.0-				
egrees				
-50.0-				
-100.0-				
Hz 0.5	1.0	10.0	100.0	450.0
	Da	ta Points		
Frequency (Hz)	Phase (°)	Frequency	(Hz)	Phase (°)
0.5	-0.3	30	(112)	-1.6
1	-0.1	50		-2.5
2	-0.2	70		-3.6
5	-0.3	REF. FR	EQ.	-5.0
7	-0.4	200		-9.5
10	-0.6	450		-21.4
15	-0.8			
20	-1.0			
20		Notes		
 This certificate sh Calibration is period. See Manufacturer Measurement unc 	teable to one or more of the following nall not be reproduced, except in full, formed in compliance with ISO 1001 's Specification Sheet for a detailed l ertainty (95% confidence level with 0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0 Ronald Stevens	g; PTB 10065, PTB 10066 and without written approval from 2-1, ANSI Z540.3 and ISO 17 isting of performance specific coverage factor of 2) for frequ	n PCB Piezotronic 2025. ations. ency ranges tested 00-1 kHz; +/- 3.0	s, Inc. during calibration
	Konald Stevens	Dat	1/.	25/2018
	*PCB F	PIEZOTRONICS		
		VIBRATION DIVISION		
	3425 Walden Avenu			

Model Numb	er:	3711E1150G			
Serial Numb	er:	8860			
Description:	DC Acc	celerometer			
Manufacturer		РСВ	Method: Back-to	-Back Comparison A	AT401-12
		Calibration	Data		
Sen	sitivity @ 100 Hz	40.2 mV/g (4.10 mV/m/s ²)	Offset Voltage	e (@ 0 g) 9.3 i	mVDC
		Sensitivity	Plot		
3.0-	Temperature: 71 °F		Relative Hum	nidity: 44 %	1
2.0-					
1.0-					-
IB 0.0-			*		-
-1.0-					
-2.0-					
-3.0-\- 2.0		10.0	100.0		1000.0
Hz		Data Poi	ints		
Frequency (Frequency (Hz)		Frequency (Hz)	Dev. (%
2	0.1	20	0.1	200	-0.0
5	0.1	30	0.1	500	-0.8
7 10	0.1	50 70	0.3 -0.0	1000	-4.5
10	0.0	REF. FREQ.	0.0		
Acceleration Level (pl 'The acceleration level	I may be limited by shaker displacement	ner: Stud Fixture Orientation: Vertical t at low frequencies. If the listed level cannot be obtaine ations by the calibration system is, $1 g = 9.80665 m/s^2$. Condition o		mula to set the vibration amplitude; Acceler	ation Level
		Notes			
 2. This certi 3. Calibration 4. See Manu 5. Due to st coverage fair 	ficate shall not be rep on is performed in cor ifacturer's Specification ate of art limitations,	or more of the following; PTB roduced, except in full, without inpliance with ISO 10012-1, A on Sheet for a detailed listing of the test uncertainty ratio is 3:1 by ranges tested during calibrate Hz; +/- 3.0%. Ronald Stevens	at written approval from NSI Z540.3 and ISO 170 of performance specificat . Measurement uncertain tion are as follows: 0.5-0	PCB Piezotronics, Inc. 25. ions. nty (95% confidence leve	Hz; +/- 1.0%
	0	PCB PIEZ			

Model Number:		1150G			
Serial Number: Description:	88 DC Acceleron				
Manufacturer:	PCB				
	reb		Method:	Back-to-Back Con	nparison AT401-12
		Calibratio	n Data		
Sensitivity	@ 100 Hz	40.2 mV/g		(4.10 mV/m/s ²)	
		Phase	Plat		
60.0-		10000		1	
45.0-					
30.0-					
egrees 0.0-		1			
-15.0-					
-30.0-					
-60.0-					
Hz 2.0	10.0	0	10	00.0	1000.0
		Data P	oints		
Frequency (Hz)	Phase	2.5	Fre	quency (Hz)	Phase (°)
2	-0.2			70	-3.5
5	-0.3		R	EF. FREQ.	-4.9
7	-0.3			200	-9.5
10	-0.6			500	-23.9
15	-0.8			1000	-48.2
20	-1.0				
30	-1.5				
50	-2.4				
 This certificate s Calibration is per See Manufacture Measurement unit 	hall not be reproduce rformed in complianc r's Specification Shee certainty (95% confid	Note e of the following; PT d, except in full, with we with ISO 10012-1, <i>A</i> et for a detailed listing lence level with cover 1-30 Hz; +/- 1.0%, 30	B 10065, PTB 10 out written approv ANSI Z540.3 and to f performance s age factor of 2) for	val from PCB Piezot ISO 17025. specifications. or frequency ranges	ronics, Inc. tested during calibration
		nald Stevens (RS))	Date:	1/25/2018
Technician:	Ro	Hallo Slevence & Astric			