Applied Foundation Testing Alabama Certificate of Authorization CA3058-E

June 8, 2018 Revision 1: June 26, 2018 Revision 2: July 2, 2018

Report of High-Strain Dynamic Pile Testing and Axial Statnamic Load Testing TP-23B I-10 over Mobile River and Bayway Load Test Program Mobile Country, Alabama AFT Project No.: 118008

Authored By:

Michael P. M. A

Michael P. Worsham, P.E. Senior Geotechnical Engineer

Donald T. Robertson, P.E. Principal Geotechnical Engineer Alabama License No.: 22873

For: Mr. Davis Daniel Jordan Pile Driving, Inc. 301 N. Water Street Mobile, Alabama 36652

REVISION 2: Revision 2 includes placement of the approved inspector's pile driving log in <u>Appendix A</u>.

REVISION 1: Revision 1 dated June 26, 2018 to the original report dated June 8, 2018 included the following changes: The Generalized Soil Conditions section was changed to indicate that the groundwater depth, not elevation, noted in boring BW-23 was 0.0 feet. In the High-Strain Dynamic Pile Testing section, the pile tip elevation after jetting was changed so that it is based on the depth of the pile tip at start of impact driving.

INTRODUCTION

The proposed I-10 Mobile River Bridge and Bayway project includes the construction of a new six-lane bridge across the Mobile River and a new eight-lane Bayway. A load test program has been conducted in advance of the construction contract to optimize the foundation design. Foundation types included in the load test program include two HP14x89 steel H-piles, two 18-inch square prestressed concrete piles, one 30-inch square prestressed concrete pile, five 54-inch diameter spun-cast concrete cylinder piles, one 60-inch diameter steel pipe pile, and one 72-inch diameter drilled shaft.

This report summarizes the installation and testing of the 54-inch diameter, 6-inch wall thickness, 112-feet long spun-cast concrete cylinder pile at location TP-23B. High-strain dynamic pile testing, also known as PDA, was performed during initial drive, 1 day restrike, and 17 day restrike. Axial Statnamic load testing was performed 15 days after the initial drive of TP-23B. A 17 day restrike was subsequently performed 2 days after axial Statnamic load testing. A summary of the test dates is included in <u>Table 1</u> below.

Test Pile	Test Description	Test Date
	Initial Drive	4/24/2018
	1 Day Restrike	4/25/2018
17-230	Statnamic Load Testing	5/9/2018
	17 Day Restrike	5/11/2018

Table 1: Summary of Test Dates

The project plans indicate test pile TP-23B was located at station 630+00.00 offset left 150 feet, adjacent to the north of the existing I-10 Bayway. Please refer to the project source documents for a site plan of the actual location of the test piles.

Installation of test pile TP-23B was performed by Jordan Pile Driving, Inc. In addition, Jordan Pile Driving, Inc. provided the over-water support frame and necessary office and field support to carry out the axial Statnamic load testing. Applied Foundation Testing (AFT) was the specialty engineering firm performing the dynamic pile testing and monitoring the axial Statnamic load test. Dynamic pile testing was performed by Mr. Michael Worsham, P.E. Axial Statnamic load testing was performed by Mr. Donald Robertson, P.E., Mr. Michael Worsham, P.E., Mr. Jason Frederick, and Mr. Zack Cohens. Data analysis and reporting was performed by Mr. Donald Robertson, P.E.

This report contains a compilation of the results for the dynamic pile testing and axial Statnamic load testing for TP-23B. This report includes an overview of the testing program, tabular and graphical representations of the data, discussion of the results, and instrumentation calibrations.

GENERALIZED SOIL CONDITIONS

Thompson Engineering performed the subsurface exploration as part of this project. The subsurface exploration consisted of drilling a single Standard Penetration Test (SPT) boring near each of the proposed foundation load test locations identified for the project. The nearest soil boring to TP-23B is boring BW-23 located at station 632+20.32 offset left 15.51 feet.

A copy of soil boring BW-23 is included in <u>Appendix E</u>. Detailed descriptions of the subsurface conditions encountered are presented in this attached soil boring. A summary of the soil conditions given in <u>Table 2</u> below represents a summary of conditions as indicated in the provided materials and is included only to assist in evaluation of the load test data. For further details regarding the soil conditions at the test site and elsewhere, the reader should reference the project source documents.

The ground water depth noted in boring log BW-23 was 0.0 feet. <u>Table 2</u> below provides a summary of the subsurface conditions.

Average Elevation From - To ⁽²⁾	Material Description	Typical N-Value Range
-4.0 to -15.8	Silty Sand (SM)	0
-15.8 to -20.8	Sand (SP)	0
-20.8 to -35.8	Sandy Fat Clay (CH)	0
-35.8 to -40.8	Silty Sand (SM)	0
-40.8 to -45.8	Clayey Sand (SC)	3
-45.8 to -50.8	Fat Clay (CH)	0
-50.8 to -55.8	Sand (SP)	NA
-55.8 to -60.8	Sandy Lean Clay (CL)	3
-60.8 to -80.8	Silty Sand (SM)	11 to 24
-80.8 to -110.8	Sand; Sand with Gravel (SP)	24 to 57
-110.8 to -130.8	Lean Clay; Fat Clay (CL and CH)	24 to 39
-130.8 to -155.8	Sand with Silt (SP-SM)	60 to 70

 Table 2: Description of Subsurface Soil Conditions⁽¹⁾

Note 1: Table created from Thompson Engineering Test Boring Record BW-23 contained in the project plans. Note 2: Elevations are referenced to North American Vertical Datum of 1988 (NAVD)

HIGH-STRAIN DYNAMIC PILE TESTING (PDA)

The test pile TP-23B was installed by Jordan Pile Driving, Inc. The test pile was prepared for high-strain dynamic testing by drilling holes and setting drop-in anchors for sensor attachment two pile diameters, or 108 inches, below the pile top.

Prior to driving pile TP-23B, the pile was jetted until the pile tip was at approximate elevation -50 feet. Pile TP-23B was then impact driven using a Pileco D180-32 open-ended diesel pile driving hammer. The Pileco D180-32 diesel hammer has a maximum rated energy of 443,500 foot-pounds (ram weight of 39,680 pounds at a stroke height of 11.18 feet). We understand the Pileco D180-32 hammer utilized a hammer cushion consisting of 12 inches of micarta and aluminum and a pile cushion consisting of 12 inches of pine plywood. A well compressed previously used pile cushion was utilized for the restrikes.

Applied Foundation Testing performed dynamic pile testing using a Pile Driving Analyzer Model PAX manufactured by Pile Dynamics, Inc. Dynamic testing was accomplished by externally attaching two piezo-electric accelerometers, two piezo-resistive accelerometers and four strain transducers and taking measurements during the initial drive and subsequent restrikes. Calibration information for the sensors utilized is included in <u>Appendix F</u>. The dynamic pile testing was performed in general accordance with the project plans and special provisions and ASTM D4945 *"Standard Test Method for High-Strain Dynamic Testing of Deep Foundations"*. During the initial drive, TP-23B was driven to where the sensor attachment points were approximately 1 foot above the waterline. At this point, the pile top was approximately 2 feet above the pile template/over-water support frame which is optimal for set-up of the Statnamic testing device.

Plots and tabular summaries of the dynamic testing results are included in <u>Appendix B</u>. In general, these summaries include blows per foot (BLC), penetration depth below reference, maximum Case method resistance, auto capacity method resistance for friction piles (RA2), maximum compressive stress (CSX), compressive stress at the bottom of pile (CSB), maximum tensile stress (TSX), stroke (STK), maximum transfer energy (EMX), and beta pile integrity factor (BTA). The top of the pile driving template was used as a reference for measuring penetration depth during the initial drive and restrikes. The top of the pile driving template was located at elevation 11.3 feet. The mudline elevation was measured as -12.3 feet. After driving the elevation of the top of soil inside the cylinder pile was measured as -19.3 feet. A summary of the test pile installation is provided in <u>Tables 3 and 4</u> below.

Test Pile	Hammer Model	Approximate Reference Elevation (feet)	Approximate Ground Elevation (feet)	Approximate Final Pile Top Elevation (feet)	Approximate Final Tip Elevation ⁽¹⁾ (feet)
TP-23B	Pileco D180-32	⁺ 11.3	-12.3	+12.4	-99.6

Table 3: Summary of Pile Driving Information

Note 1: Approximate reference elevation based on contractor survey measurement. Approximate final pile tip elevation based on depth below reference, pile movements during restrikes, and load test permanent displacement.

Test Pile	EOD or BOR ⁽¹⁾	Blows per Foot at EOD or Blows per Inch for Restrike	Max. CSX Stress (ksi)	Avg. CSX Stress (ksi)	Max. TSX Stress (ksi)	Avg. TSX Stress (ksi)	Max. CSB Stress (ksi)	Avg. CSB Stress (ksi)	Avg. Transfer Energy (k- ft) / Approx. Stroke (ft.)
TP-23B	EOD	13 Blows/3"	3.17	2.20	1.29	0.49	1.81	1.22	60.0/6.51

Table 4: Summary of Dynamic Pile Testing Results

Test Pile	EOD or BOR ⁽¹⁾	Blows per Foot at EOD or Blows per Inch for Restrike	Max. CSX Stress (ksi)	Avg. CSX Stress (ksi)	Max. TSX Stress (ksi)	Avg. TSX Stress (ksi)	Max. CSB Stress (ksi)	Avg. CSB Stress (ksi)	Avg. Transfer Energy (k- ft) / Approx. Stroke (ft.)
	1 Day RS	7 Blows/1", 5 Blows/1", 3 Blows/1"	5.10	4.51	1.60	0.95	3.26	3.07	115.9/8.28
	17 Day RS	4 Blows/1", 3 Blows/1", 3 Blows/1"	6.07	5.24	1.46	1.01	4.08	3.55	152.6/9.98

Note 1: EOD – End of Initial Drive; RS – Restrike

Allowable maximum driving stresses for the spun-cast concrete cylinder piles are defined by the formulas located in the project special provisions. The maximum allowable compressive stress limit is defined as $0.85\sqrt{(f_c)}$ – effective prestress. The maximum allowable tensile stress limit is defined as $3\sqrt{(f_c)}$ + effective prestress.

In the above formula f'c is defined as the minimum concrete compressive strength for the piles, which is 10,000 psi per Plan Sheet 13. Per Plan Sheet 13, the strands shall be stressed to an initial tension of 30,900 lbs. Assuming a loss of 20 percent from initial tension provides an effective prestress value of 546 psi (0.55 ksi). The maximum allowable compressive stress is calculated as 7.95 ksi, and the maximum allowable tensile stress is calculated as 0.85 ksi.

The dynamic pile testing measurements indicate the maximum tensile stress (TSX) exceeded allowable stress limits for portions of the initial drive and restrikes. In general, the high tensile stresses for some blows occurred early in the initial drive in softer driving conditions. During restrikes, maximum tensile stress (TSX) values exceeding the allowable stress limits were measured. These high tensile stresses during restrikes were due to the use of a previously used conditioned pile cushion and the hammer at the highest fuel setting of 4 in order to transfer maximum energies to the pile to attempt to fully mobilize resistance. Given the purposes of the load test program, it is important to attempt to fully mobilize resistance during testing. In a production pile driving situation, additional pile cushion material or driving procedures to avoid these high tensile stresses would be needed. It is not recommended letting driving stresses reach levels exceeding allowable stress limits during production pile driving and restrikes.

The dynamic test data does not show any signs of integrity problems for TP-23B.

SIGNAL MATCHING ANALYSIS

Signal matching analyses were performed using the computer program CAPWAP (version 2014) to further evaluate the field measurements. Summaries of these analyses are presented in <u>Table 5</u> below. The complete analyses are included in <u>Appendix C</u>. Signal matching analysis is considered a standard procedure to estimate the total ultimate resistance as well as estimate the resistance distribution (shaft and toe) from the dynamic pile testing data. The signal matching approach is used to back calculate various soil parameters. The program uses the data measured during a single blow as a boundary condition and the user performs many iterations on soil parameters to make a calculated wave-up match the measured one.

Test Pile	EOD or Restrike	Blow No.	R _{ult} (kips)	R _{shaft} (kips)	R _{end} (kips)	Max. Case Method JC Damping Factor	EMX (k- ft)/Stroke (feet)	Qs (in)	Qt (in)	Ss (s/ft)	St (s/ft)	Match Quality
	EOD	853	1050	379	671	0.85	86.7/ 7.72	0.04	0.68	0.15	0.13	3.31
TP- 23B	1 Day Restrike	14	1050	549	501	0.70	144.0/ 9.07	0.04	0.40	0.30	0.15	2.45
	17 Day Restrike	3	1080	663	417	0.70	196.7/ 11.59	0.04	0.48	0.40	0.19	2.89

 Table 5: Signal Matching Results Summary

The results of the CAPWAP signal matching analyses generally have the most confidence in the total resistance value, and to a lesser extent the resistance distribution in side resistance along the length of the pile and end bearing resistance at the pile bottom. This is generally attributed to intricacies in separating side resistance and end bearing resistance from the total resistance using signal matching techniques. The side resistance values shown in the analyses are the combined side resistance from the exterior and interior of the cylinder piles. It is worth noting that the signal matching analyses indicated only a small increase in total resistance over time tested, with increasing side resistance values and deceasing end bearing resistance values over time. These changes may be due to a loss in end bearing resistance with an offsetting increase in side resistance, or it could be due to difficulties with the analysis program correctly separating side resistance and end bearing resistance.

The signal matching analysis for TP-23B indicated a total ultimate resistance of 1,050 kips at end of initial drive, 1,050 kips during the 1 day restrike; and 1,080 kips during the 17 day restrike (2 days after axial Statnamic load testing). Based on the set measurements during initial drive and restrikes for TP-23B, the resistance values presented in this report may be considered fully mobilized.

AXIAL STATNAMIC LOAD TESTING

Test pile TP-23B was subjected to axial Statnamic load testing (commonly referred to as Rapid load testing) on May 9, 2018, or 15 days after initial drive of the pile. Load testing was accomplished utilizing the 19MN Statnamic device in a single load cycle.

AXIAL STATNAMIC INSTRUMENTATION

The top of the pile was instrumented with a calibrated load cell and accelerometers (to measure acceleration and to calculate velocity and displacement). A brief description of the instrumentation used during the Statnamic test is given below. Calibration data is included in <u>Appendix F</u>.

<u>Statnamic Device</u> - The Statnamic load testing was accomplished with a device capable of applying a force of approximately 19 MN. This device uses a controlled burn of fuel to generate gas pressure inside a cylinder and ram (analogous to a gas actuated jack). As the pressure builds, it reacts against a heavy mass above the foundation. The pressure eventually builds high enough to propel the reaction mass upward; in turn a downward load is simultaneously applied to the foundation top which is many times greater than the weight of the reaction mass.

The Statnamic device produces a time dependent load on the order of 1/2 second or less. The load produced is not an impact, which makes the Statnamic analysis very simplified and more reliable than dynamic techniques.

Load Cell - The load cell is calibrated full scale and manufactured by the George Kelk Corporation.

<u>Accelerometers</u> - Three accelerometers were arranged across the top of the shaft approximately 120 degrees apart during Statnamic testing. The accelerometers were manufactured by PCB Piezotronics, Inc. From the measured accelerations, shaft displacements at each accelerometer location were calculated. This provides very reliable and highly accurate displacement data.

<u>Data Acquisition System</u> - A National Instruments Data Acquisition System recorded the load cell and accelerometers at 5,000 samples per second for each sensor. This was more than ample to fully define the load and displacement response of the drilled shaft foundation during the load test.

AXIAL STATNAMIC TEST SET UP

Prior to the axial Statnamic load testing, Jordan Pile Driving set-up the over-water frame to support the test frame. This included driving pipe piles and constructing a work platform. This over-water frame was also used as the pile driving template. The top of pile concrete was in good condition after pile driving and required only a thin layer of quick set grout to achieve a level and smooth surface.

Additional preparations for the Statnamic load test included the following:

- Construct over-water support frame and mats to support the Statnamic device at the appropriate testing elevation and allow access to the pile.
- Prepare pile top with thin layer of quick set grout for a level and smooth testing surface.
- Assembly of the Statnamic load system as follows:
 - Placement of the load cell and Statnamic piston on the pile top.
 - Placement of the mechanical catch frame on support mats.
 - Placement of the Statnamic silencer and reaction masses on the pile top.
- Placement of accelerometers near the pile top.
- Connecting all instrumentation (load cell and accelerometers) to the data acquisition system and computer.

AXIAL STATNAMIC LOAD TEST RESULTS

The analysis of the Statnamic load test data was performed using the Unloading Point Method (UPM). Due to the rapid application of the load, it was also necessary to account for rate of loading effects. The analysis presented herein was performed using the UPM method in conjunction with rate effect factors (REF) in as suggested in the National Cooperative Highway Research Program (NCHRP) Project: NCHRP 21-08.

Test Pile TP-23B was loaded to a maximum derived static load of 1,917 kips. The maximum displacement during testing was 1.48 inches. The measured permanent displacement upon complete unloading was 1.25 inches. <u>Table 6</u> presents a summary of the maximum derived static load, maximum displacement, and the permanent displacement upon unloading. The derived static load versus displacement response for TP-23B is shown in <u>Figure 1</u> located in <u>Appendix D</u>. The derived static load versus displacement response for TP-23B exhibited

primarily elastic behavior until the failure load of approximately 1,880 kips where pile to soil yielding behavior occurred.

Description	Data
Maximum Derived Static Load	1,917 kips
Maximum Displacement	1.48 inches
Permanent Displacement	1.25 inches

Table 6: Summary of Load and Displacement for Test Pile TP-23B

Additional commentary on the data reduction is described as follows. During the Statnamic test, the load cell and accelerometers were monitored with a high speed data acquisition system. This data is then analyzed to determine the overall static resistance. Before performing any static analysis of the data, the data must be "pre-processed", plotted and evaluated. Specifically, the load cell must be offset to account for the weight of the Statnamic reaction masses, which are supported by the pile prior to the load test. The applied Statnamic load versus time presented in Figure 2 in <u>Appendix D</u> depicts this initial static weight and shows approximately zero load on the pile after the load test. Additional plots of test measurements are included in the <u>Appendix D</u> consisting of: the pile top average acceleration versus time, integrated velocity at the pile top versus time, and pile top displacement versus time.

SUMMARY AND CONCLUSIONS

The load test program included the installation of a 54-inch diameter, 6-inch wall thickness, 112feet long spun-cast concrete cylinder pile at location TP-23B. TP-23B was subjected to dynamic pile testing during initial drive and 1 and 17 day restrikes and axial Statnamic load testing 15 days after initial drive. A summary of the load test results is provided below:

TP-23B Load Testing Summary:

- The signal matching analysis of the dynamic testing data for TP-23B indicated a total ultimate resistance of 1,050 kips at end of initial drive, 1,050 kips for the 1 day restrike, and 1,080 kips for the 17 day restrike (2 days after axial Statnamic rapid load testing).
- TP-23B was subjected to axial Statnamic load testing 15 days after initial drive with a maximum derived static load of 1,917 kips with a maximum displacement of 1.48 inches and a permanent displacement of 1.25 inches.
- The failure load during axial Statnamic load testing based on the Davisson Failure Criterion was approximately 1,800 kips. The pile top displacement at the failure load was approximately 0.94 inch.

The purpose of this test pile program is to determine the pile bearing resistances (ultimate, side resistance, and end bearing) achievable for the pile type, size, and lengths installed. In addition, the designers may choose to use the results to optimize their foundation design and/or to minimize the risk of constructability issues. However, the design team would also need to consider the scope of the test pile program, the methods used for pile installation, and potential variability of soils along the bridge length when using the information gathered.

Some points to consider from the test pile program for the 54-inch diameter, 6-inch wall thickness, 112-feet long spun-cast concrete cylinder pile at location TP-23B are as follows:

- The dynamic pile testing results indicated lower ultimate total resistances than measured during the axial Statnamic load test at TP-23B. Additionally, attempting to utilize higher resistances similar to those measured during axial Statnamic load testing in the dynamic test data signal matching analysis yielded poor match qualities so this approach was not utilized. The dynamic testing analyses included in this report are based on typical methods which produce good match qualities, and do not represent an attempt to match the axial Statnamic load test results. During production phase dynamic pile testing it may not be possible to verify the higher resistances achieved in this axial Statnamic load test. Additionally, during production phase testing when keeping driving stress values below allowable limits during initial drives and restrikes is of the upmost importance, due to possibly lower transfer energies, less resistance may be mobilized than shown in this report.
- The signal matching analyses indicated only a small increase in total resistance over the time tested for TP-23B. Additionally, the signal matching analyses indicate increasing side resistance values and deceasing end bearing resistance values over time. These changes may be due to a loss in end bearing resistance with an offsetting increase in side resistance, or it could be due to difficulties with the CAPWAP signal matching analysis program correctly separating side resistance and end bearing resistance.
- Dynamic pile testing on production piles is recommended to determine bearing resistances, measure pile driving stresses, and determine hammer driving system suitability. Driving criteria may be developed based on this testing with recommendations provided to control tensile and compressive stresses at or below allowable levels.
- Signal matching analyses of the production pile dynamic test data is recommended to confirm and/or to provide a better estimate of the ultimate pile bearing resistance.

Below is a summary of the Appendix contents:

- Appendix A Inspector's Pile Driving Records
- Appendix B Dynamic Pile Testing Data Summaries
- Appendix C CAPWAP Signal Matching Analysis Output
- Appendix D Axial Compressive Statnamic Rapid
- Load Testing Graphical Results
 - Figure 1 Derived Static Load versus Displacement Response from Statnamic Load Testing with Davisson Failure Criterion
 - Figure 2 Applied Statnamic Load versus Elapsed Time
 - Figure 3 Pile Top Acceleration and Velocity versus Elapsed Time
 - Figure 4 Pile Top Displacement versus Elapsed Time
 - Appendix E Relevant Project Documents
- Appendix F Instrument Calibrations

CLOSURE

We want to thank you for the opportunity to be involved in this project. We also want to thank you for all your support in setting up the test. Please do not hesitate to call us if you have any questions regarding the information in this report.

LIMITATIONS

This report presents test measurements made by Applied Foundation Testing, Inc. Interpretations were made based upon the measurements made by AFT with the latest techniques available and currently accepted standards of care recognized by Geotechnical Engineering professionals. Applied Foundation Testing is an independent agency and is not the Geotechnical Engineer of Record. The Geotechnical Engineer of Record should ultimately make final recommendations for foundation design and construction.

Appendix A

Inspector's Pile Driving Records TP-23B

I-10 over Mobile River Bridge Load Test Program ALDOT Project No.: IM-I010(341)

DOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

FORM C-15A	ALABA	A DEPAR	TMENT OF TR	ANSPORT		· · · · · · · · · · · · · · · · · · ·	
REVISED 08-07-95		TES	PILE RECOR	D			
Project Number			County		Division		
	IM-I010(341)		Mot		Southwest Region		
Bridge: Station		to Station		Bridge Identi	fication Numbe	91	
630+	-00		630+00				
Road Between	_	and		Lai	ne (if applicable	e)	
]-1	0		I-10			WB	
Contractor	dan Pile Driving		Inspector	Do	nald Hecto	r -	
Date	Bent No & Lane		Pile No	Kin	nd of Soil		
4/24/2018	TEST	PILE	TP-23B	10.1	Soft. V	Vet. Black. Fat Clav	
Kind of Pile	1	Size of Pile		Tot	tal Length (ft)	, 2,	
Spun Cast	Cylinder		54"		• • • •	112	
Elev. Ground Line at Pile		Final Elev. At To	op of Pile	Tip	Elevation	······································	
-12.	3		12.4			-99.6	
Hammer Make	~ ~	Hammer Model		Ha	mmer Kind		
PILE	00	D180-32				Diesel	
Hammer Type	<u> </u>	Hammer Action	Cinalo	Rai	ted Energy (ft	lbs.) E00@11.1.Ctrake	
Weight of Hammer (lbs.)	51 I		Design Load (from pla		440,3	SUOUETT. T STOKE	
vveight of Hammer (103.)	39,680		Design Lond (nom pr				
Hammer Cushion: Materi	al	Thickness	(in.)	Area (sq. in.)			
Aluminum and	Micarta Alternatii	ng 12		762			
Pile Cushion (Before Driv	ing): Material	Thickness	(in.)	Area (sq. in.)			
PI	ywood	12			904.32		
Pile Cushion (After Drivin	g): Material	Thickness	(in.)	Are	а (sq. in.)		
PI	ywood						
Pile Cap Weight (lbs.)							
25,868							
Height Of Fall (feet)	Energy Delivered In (ft-lbs.)	Pile (E)	Blows Per Foot Of Penetration (N)	Total P.	enetration eet)	Bearing (Ru) (tons)	
3.44 136,499			6		80		
5.66	224,589		15		81		
6.09	241,651		26	8	82		
6.24	247,603		30	1	83		

REMARKS

1. When using open type and gravity hammers, record weight of hammer and height of fall of hammer. Show rated energy when using closed type hammers.

2. Energy delivered to pile should be maintained practically constant once record keeping has begun unless specified otherwise by the Engineer.

- 3. Pile cushion is only required with concrete piling,
- 4. Pile cushion thickness after driving must be at least one-half the original thickness.

5. The bearing should be determined from the graph of Blows/Foot versus Bearing which is provided from the Wave Equation Analysis or Dynamic Formula of the driving system. If a graph is not provided, refer to Item 505.03(b)2 of the specifications to estimate the bearing capacity using the Dynamic Formula.

- 6. Driving should be continuous. Note any interruptions exceeding one hour.
- 7. Draw a sketch on back of this sheet showing location of test pile.
- 8. For continuation of test pile record, use Form C-15C-2.

Project Manager

 9. Test pile (check one): Static Load Tested ______ Dynamic Load Test be attached to this report).

x ____ (If static load tested, load test report shall Approved

Correct

Area Operations Engineer

Sheet No. 1 of 2

FORM C-15A-2	ALABA T DE	PARTMENT OF TRA	NSPORTATION	
REVISED 08-07-95	CONTINU	ATION OF TEST PILI	E RECORL	
Project Number	IM-I010(341)	County Mob	ile Division	Southwest Region
Bridge: Station 630+	to Statio	n 630+00	Bridge Identification Number	N/A
Date	Bent No.& Lane	Pile No.	Kind of Soil	
4/24/2018	TEST PILE	TP-23B	Soft, W	et, Black, Fat Clay
(feet)	(fi dbs)	Penetration (N)	(leet)	(tons)
6.30	249,984	31	84	
6.37	252,762	32	85	
6.41	254,349	37	86	
6.49	257,523	45	87	
6.43	255,142	48	88	
6.44	255,539	45	89	
6.49	257,523	43	90	······································
6.45	255,936	40	91	· · · · · · · · · · · · · · · · · · ·
5.44	215,859	55	92	
6.41	254,349	47	93	
6.39	253,555	47	94	
6.36	252,365	44	95	
6.36	252,365	55	96	
7.56	299,981	37	97	
7.47	296,410	37	98	
7.48	296,806	42	99	
		,,,,,_,_,,,,,,,,,,,,,,,		
		1999 - La Harrison		

Appendix B Dynamic Pile Testing Data Summaries TP-23B

I-10 over Mobile River Bridge Load Test Program

ALDOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

1 - Template (Reference) El. = 11.25', Mudline El. = -12.3'

Page 1 PDIPLOT2 2017.2.58.3 - Printed 30-May-2018

I-10 M <u>OP: A</u> AR:	10BILE R <u>FT</u> 904.78	RIVER - T	P-23B II	0						54" <u>Date</u> SP	CYL, 6" <u>: 24-Apri</u> : 0.1	WALL <u>I-2018</u> 50 k/ft ³
LE: WS: 1	103.00 15,500.0	ft f/s								EM JC:	l: 7,778. 0.	33 ksi 85
RMX: RX9: RA2: CSX: CSB:	Maximur Maximur Auto Cap Compres Compres	n Case M n Case M pacity Fri ssion Stro ssion Stro	Method C Method C iction Pile ess Maxi ess at Bo	Capacity (Capacity (es mum ottom of F	JC) JC=0.9) Pile	TSX: EMX STK: BTA:	Tensio Maxim Hammo Integrit	n Stress um Energ er Stroke y Factor	Maximur gy (1)	n - Full F	Record S	earch
BL#	Depth	BLC	TYPE	RMX	RX9	RA2	CSX	CSB	TSX	EMX	STK	BTA
2	ft 62.00	bl/ft 2	AV2 STD MAX MIN	kips 0 0 0 0	kips 0 0 0 0	kips 0 0 0 0	ksi 0.94 0.07 1.01 0.87	ksi 0.14 0.01 0.15 0.14	ksi 0.06 0.04 0.10 0.01	k-ft 39.1 2.1 41.3 37.0	ft ** ** **	(%) 85 5 89 80
4	63.00	2	AV2	0	0	0	0.91	0.10	0.20	33.2	4.20	88
			STD	0	0	0	0.23	0.08	0.08	21.3	0.00	12
			MAX MIN	0 0	0 0	0 0	1.14 0.69	0.18 0.01	0.28 0.13	54.5 11.9	4.20 4.20	100 76
6	64.00	2	AV2	0	0	0	1.12	0.17	0.22	51.4	4.67	88
			STD	0	0	0	0.15	0.10	0.17	28.0	0.00	12
			MAX MIN	0	0	0	1.27 0.98	0.27 0.07	0.39 0.05	79.4 23.4	4.67 4.67	100 76
11	65.00	5	AV5	0	0	64	1.19	0.23	0.33	38.7	5.34	100
			STD	0	0	81	0.32	0.08	0.16	24.5	1.33	100
			MIN	0	0	0	0.76	0.34 0.15	0.58	81.9 14.5	7.64 3.97	100
15	66.00	4	AV4	0	0	85	1.78	0.38	0.63	71.1	6.77	100
			STD	0	0	56	0.22	0.05	0.18	18.2	1.14	0
			MAX MIN	0	0	158 0	1.99 1.48	0.44 0.30	0.91 0.40	97.1 45.6	8.15 5.35	100 100
19	67.00	4	AV4	0	0	0	1.39	0.29	0.56	40.7	5.13	100
			MAX	0	0	0	0.05	0.01	0.06	1.5 42.4	0.06	100
			MIN	0	0	0	1.32	0.28	0.48	38.2	5.05	100
24	68.00	5	AV5	0	0	9	1.42	0.30	0.60	39.7	5.13	100
			STD	0	0	17	0.04	0.01	0.03	2.1	0.07	0
			MIN	0	0	43 0	1.45	0.32	0.63	42.9 36.6	5.22 5.05	100
29	69.00	5	AV5	0	0	43	1.75	0.37	0.85	54.8	5.77	100
			STD	0	0	9	0.08	0.02	0.07	3.6	0.20	0
			MAX	0	0	51 29	1.84 1.59	0.39 0.33	0.91 0.72	58.7 48.5	6.01 5.42	100
33	70.00	4	AV4	0	0	37	1.71	0.34	0.84	54.1	5.67	100
			STD	0	0	8	0.05	0.01	0.04	2.3	0.09	0
			MAX	0	0	44	1.78	0.35	0.90	57.1	5.80	100
			IVIIIN	U	U	21	1.00	0.04	0.00	J1./	0.00	100

Page 2 PDIPLOT2 2017.2.58.3 - Printed 30-May-2018

54" CYL, 6" WALL

I-10 MOBILE RIVER - TP-23B ID OP: AFT

DP: A	FT									Date	: 24-Apri	I-2018
BL#	Depth ft	BLC bl/ft	TYPE	RMX kips	RX9 kips	RA2 kips	CSX ksi	CSB ksi	TSX ksi	EMX k-ft	STK ft	BTA (%)
36	71.00	3	AV3	0	0	0	1.72	0.33	0.88	57.7	5.67	100
			STD	0	0	0	0.04	0.01	0.03	1.7	0.10	0
			MAX	0	0	0	1.//	0.34	0.91	60.1 56.2	5.80 5.50	100
				0	0	0	1.00	0.52	0.00	50.2	0.00	100
40	72.00	4	AV4	0	0	25	1.63	0.32	0.83	48.0	5.45	100
			STD	0	0	3	0.04	0.01	0.03	1.9	0.09	0
			MIN	0	0	28 20	1.68	0.33	0.86	50.6 45.3	5.54 5.31	100
				Ũ	Ũ	20		0.00	0.10	10.0	0.01	100
43	73.00	3	AV3	0	0	7	1.75	0.33	0.82	58.6	5.43	100
			SID	0	0	10 21	0.18	0.05	0.06	17.6 82.8	0.03	100
			MIN	0	0	0	1.60	0.40	0.88	41.7	5.40	100
45	74.00	2	AV2	0	0	27	2.36	0.41	1.28	104.2	7.96	100
			MAX	0	0	27 53	0.11 2.47	0.04	0.01	21.7 125.8	1.02	100
			MIN	Ő	Ő	0	2.24	0.37	1.27	82.5	6.95	100
10	75.00	2	A\/2	0	0	0	1 20	0.22	0.54	27 5	1 00	100
40	75.00	3	STD	0	0	0	1.29	0.22	0.54	37.5	4.00 0.14	100
			MAX	Ő	Ő	Õ	1.36	0.23	0.60	41.2	4.99	100
			MIN	0	0	0	1.16	0.20	0.43	32.2	4.68	100
51	76.00	3	AV3	0	0	0	1.30	0.22	0.57	36.9	4.88	100
0.	10.00	Ũ	STD	Õ	Õ	Õ	0.09	0.02	0.08	2.2	0.16	0
			MAX	0	0	0	1.41	0.24	0.67	40.0	5.08	100
			MIN	0	0	0	1.20	0.20	0.47	35.1	4.68	100
53	77.00	2	AV2	0	0	0	1.28	0.16	0.59	40.5	4.85	90
			STD	0	0	0	0.02	0.01	0.02	0.2	0.07	1
			MAX	0	0	0	1.30	0.17	0.61	40.7	4.91	90
			IVIIIN	0	0	0	1.20	0.16	0.57	40.3	4.70	09
57	78.00	4	AV4	0	0	24	1.29	0.22	0.56	35.7	4.83	100
			STD	0	0	14	0.04	0.01	0.03	2.4	0.07	0
			MAX	0	0	36	1.36	0.24	0.60	39.3	4.95 4.76	100
			IVIII N	0	0	0	1.24	0.21	0.01	02.0	4.70	100
60	79.00	3	AV3	0	0	0	1.54	0.26	0.76	48.3	5.29	100
			SID	0	0	0	0.05	0.01	0.04	1./	0.07	100
			MIN	0	0	0	1.48	0.20	0.82	46.5	5.20	100
									- 			
63	80.00	3	AV3	0	0	0	1.50	0.24	0.77	44.6	5.25	100
			MAX	0	0	0	1.61	0.02	0.00	4.0	5.45	100
			MIN	Ō	Ō	Ō	1.39	0.21	0.70	38.6	5.03	100
65	81.00	n	٨\/٢	0	0	0	1 24	0.16	0 66	10 1	1 05	0E
00	01.00	2	STD	0	0	0	0.03	0.00	0.00	۰.1 0.1	0.08	90 5
			MAX	Õ	Õ	õ	1.37	0.16	0.69	42.2	5.03	100

Page 3 PDIPLOT2 2017.2.58.3 - Printed 30-May-2018

54" CYL, 6" WALL

I-10 MOBILE RIVER - TP-23B ID OP: AFT

DP: A	FT									Date	: 24-Apri	I-2018
BL#	Depth ft	BLC bl/ft	TYPE	RMX kips	RX9 kips	RA2 kips	CSX ksi	CSB ksi	TSX ksi	EMX k-ft	STK ft	BTA (%)
68	82.00	3	AV3 STD MAX	0 0 0	0 0 0	0 0 0	1.31 1.39 0.03 1.43	0.16 0.19 0.01 0.20	0.63 0.68 0.03 0.72	42.0 39.6 1.5 41.1	4.87 4.99 0.07 5.08	90 100 0 100
71	83.00	3	MIN AV3 STD	0	0	0	1.35 1.22 0.05	0.19 0.17 0.01	0.64 0.54 0.04	37.5 33.7 1.7	4.91 4.73 0.06	100 100 0
			MAX MIN	0	0	0	1.29	0.17	0.61	30.0 32.1	4.62	100
73	84.00	2	STD MAX MIN	0 0 0 0	0 0 0	0 0 0	1.21 0.03 1.24 1.18	0.13 0.00 0.14 0.13	0.55 0.04 0.59 0.51	36.6 0.6 37.2 36.0	4.75 0.07 4.82 4.68	100 0 100 100
76	85.00	3	AV3 STD MAX MIN	0 0 0 0	0 0 0 0	7 7 16 0	1.23 0.04 1.28 1.17	0.16 0.01 0.17 0.15	0.53 0.04 0.57 0.48	33.4 1.2 34.5 31.8	4.75 0.07 4.83 4.67	96 6 100 88
78	86.00	2	AV2 STD MAX MIN	0 0 0	0 0 0 0	0 0 0 0	1.41 0.00 1.42 1.41	0.16 0.00 0.17 0.16	0.72 0.00 0.72 0.71	45.8 1.6 47.4 44.2	5.01 0.00 5.01 5.01	95 5 100 90
81	87.00	3	AV3 STD MAX MIN	0 0 0 0	0 0 0 0	4 6 12 0	1.56 0.08 1.65 1.47	0.27 0.03 0.31 0.23	0.78 0.05 0.84 0.73	51.5 5.0 56.7 44.8	5.29 0.19 5.51 5.05	100 0 100 100
85	88.00	4	AV4 STD MAX MIN	0 0 0 0	0 0 0 0	103 23 125 65	1.70 0.04 1.76 1.65	0.31 0.01 0.32 0.30	0.88 0.04 0.94 0.82	53.2 1.4 54.5 51.0	5.57 0.05 5.63 5.49	100 0 100 100
89	89.00	4	AV4 STD MAX MIN	0 0 0 0	0 0 0 0	158 17 170 129	1.91 0.04 1.94 1.85	0.37 0.02 0.40 0.34	1.03 0.04 1.06 0.96	63.6 1.4 66.0 62.5	5.97 0.11 6.06 5.78	100 0 100 100
94	90.00	5	AV5 STD MAX MIN	0 0 0 0	0 0 0 0	162 23 207 142	1.88 0.04 1.93 1.83	0.37 0.02 0.40 0.35	1.00 0.04 1.05 0.96	58.5 2.1 61.7 55.4	5.87 0.08 5.96 5.75	100 0 100 100
99	91.00	5	AV5 STD MAX MIN	255 79 334 118	252 82 334 109	211 39 265 167	2.05 0.06 2.12 1.94	0.55 0.04 0.59 0.47	1.03 0.03 1.07 0.98	67.5 2.7 69.8 62.5	6.29 0.18 6.51 5.98	100 0 100 100
113	92.00	14	AV14	436	435	382	1.79	0.59	0.72	46.0	5.76	100

Page 4 PDIPLOT2 2017.2.58.3 - Printed 30-May-2018

54" CYL, 6" WALL

I-10 MOBILE RIVER - TP-23B ID OP AFT

OP: A	FT									Date	: 24-Apri	I-2018
BL#	Depth ft	BLC bl/ft	TYPE STD MAX MIN	RMX kips 77 543 296	RX9 kips 77 543 296	RA2 kips 52 463 259	CSX ksi 0.29 2.12 1.17	CSB ksi 0.14 0.77 0.37	TSX ksi 0.22 1.11 0.30	EMX k-ft 11.6 66.1 22.7	STK ft 0.56 6.45 4.61	BTA (%) 0 100 100
128	93.00	15	AV15 STD MAX MIN	592 26 645 552	591 26 644 552	491 29 544 449	2.01 0.05 2.07 1.91	0.88 0.03 0.93 0.83	0.66 0.05 0.77 0.60	52.1 2.1 55.3 47.3	6.14 0.12 6.34 5.93	100 0 100 100
154	94.00	26	AV26 STD MAX MIN	710 29 759 662	709 29 759 661	632 46 770 556	2.05 0.03 2.10 1.97	0.97 0.02 1.01 0.90	0.59 0.03 0.66 0.52	52.2 1.9 55.6 48.8	6.24 0.09 6.42 6.04	100 0 100 100
185	95.00	31	AV31 STD MAX MIN	771 15 797 737	770 15 797 737	719 40 837 671	2.07 0.05 2.18 1.98	1.01 0.03 1.09 0.96	0.54 0.04 0.63 0.47	53.5 3.1 62.0 48.9	6.35 0.13 6.63 6.14	100 0 100 100
218	96.00	33	AV33 STD MAX MIN	821 23 874 772	820 23 874 772	847 53 925 715	2.10 0.06 2.21 1.97	1.05 0.03 1.11 0.99	0.52 0.05 0.60 0.41	54.1 3.1 59.1 48.4	6.41 0.14 6.76 6.12	100 0 100 100
254	97.00	36	AV36 STD MAX MIN	853 9 871 822	852 9 871 821	897 32 943 783	2.22 0.06 2.33 2.03	1.16 0.04 1.26 1.10	0.53 0.06 0.63 0.42	58.6 3.2 65.1 50.5	6.51 0.15 6.79 6.14	100 0 100 100
297	98.00	43	AV43 STD MAX MIN	838 15 859 787	837 15 858 787	935 34 996 777	2.16 0.09 2.36 1.80	1.22 0.03 1.30 1.14	0.42 0.06 0.57 0.23	57.2 4.2 67.9 39.7	6.53 0.21 7.08 5.73	100 0 100 100
341	99.00	44	AV44 STD MAX MIN	846 20 880 782	836 17 868 781	926 21 978 881	2.23 0.06 2.35 2.07	1.27 0.02 1.31 1.23	0.43 0.04 0.53 0.34	59.3 2.5 64.9 53.7	6.57 0.11 6.85 6.25	100 0 100 100
385	100.00	44	AV44 STD MAX MIN	895 25 933 839	884 25 921 830	920 21 965 863	2.17 0.08 2.38 1.96	1.29 0.03 1.35 1.23	0.35 0.06 0.53 0.20	56.8 3.5 67.0 48.9	6.50 0.18 7.01 6.09	100 0 100 100
430	101.00	45	AV45 STD MAX MIN	931 19 966 875	922 19 959 864	935 22 975 863	2.16 0.06 2.27 2.00	1.32 0.02 1.36 1.26	0.31 0.04 0.42 0.24	57.3 3.3 64.6 50.6	6.54 0.15 6.91 6.20	100 0 100 100
478	102.00	48	AV48 STD MAX MIN	968 13 1,010 935	965 14 1,010 931	964 19 1,010 916	2.18 0.05 2.27 2.07	1.32 0.02 1.35 1.28	0.31 0.03 0.37 0.26	57.9 2.3 63.6 52.1	6.56 0.11 6.76 6.31	100 0 100 100

Page 5	5
PDIPLOT2 2017.2.58.3 - Printed 30-May-2018	

I-10 N OP: A	10BILE F	RIVER - T	TP-23B I	D						54" Date	CYL, 6" : 24-Apri	WALL I-2018
BL#	Depth ft	BLC bl/ft	TYPE	RMX kips	RX9 kips	RA2 kips	CSX ksi	CSB ksi	TSX ksi	EMX k-ft	STK ft	BTA (%)
537	103.00	59	AV59 STD MAX MIN	872 52 1,019 771	872 52 1,017 771	971 36 1,123 833	2.35 0.14 2.81 2.01	1.41 0.06 1.66 1.29	0.47 0.11 0.63 0.13	58.2 5.0 84.8 48.4	6.42 0.24 7.64 5.91	100 0 100 100
586	104.00	49	AV49 STD MAX MIN	846 14 892 814	839 14 891 811	971 16 1,003 935	2.39 0.05 2.57 2.30	1.43 0.02 1.47 1.38	0.52 0.04 0.67 0.43	59.7 2.2 66.4 54.4	6.47 0.10 6.82 6.25	100 0 100 100
634	105.00	48	AV48 STD MAX MIN	835 19 889 774	826 17 873 774	1,011 21 1,053 953	2.33 0.06 2.49 2.21	1.47 0.02 1.51 1.43	0.50 0.04 0.62 0.44	60.5 2.7 68.0 55.5	6.49 0.12 6.85 6.28	100 0 100 100
673	106.00	39	AV39 STD MAX MIN	828 16 859 796	824 16 854 794	1,037 19 1,072 988	2.27 0.05 2.40 2.18	1.46 0.02 1.52 1.42	0.46 0.05 0.55 0.34	58.5 2.5 66.8 54.1	6.45 0.12 6.76 6.25	100 0 100 100
723	107.00	50	AV50 STD MAX MIN	806 19 840 765	799 19 837 757	1,004 28 1,063 951	2.20 0.06 2.39 2.08	1.50 0.02 1.55 1.45	0.34 0.05 0.49 0.23	56.2 2.6 63.9 49.6	6.38 0.12 6.76 6.09	100 0 100 100
762	108.00	39	AV39 STD MAX MIN	963 66 1,081 812	952 66 1,066 802	1,056 38 1,122 958	2.59 0.19 2.90 2.19	1.65 0.06 1.74 1.51	0.44 0.09 0.66 0.19	80.4 11.1 101.8 56.6	7.48 0.52 8.61 6.37	100 0 100 100
801	109.00	39	AV39 STD MAX MIN	1,006 24 1,048 936	990 23 1,031 925	1,050 17 1,085 1,019	2.64 0.10 2.90 2.42	1.66 0.02 1.73 1.61	0.48 0.10 0.71 0.24	82.7 5.2 95.9 70.9	7.58 0.27 8.36 6.98	100 0 100 100
843	110.00	42	AV42 STD MAX MIN	1,053 45 1,172 877	1,038 43 1,153 859	1,023 45 1,121 775	2.64 0.15 3.17 2.27	1.61 0.05 1.81 1.54	0.49 0.12 0.79 0.15	81.9 7.4 105.7 61.1	7.62 0.26 8.57 7.11	100 0 100 100
856	110.25	52	AV13 STD MAX MIN	1,024 55 1,049 837	1,005 55 1,033 817	962 78 1,001 694	2.83 0.03 2.88 2.77	1.61 0.04 1.74 1.57	0.66 0.07 0.85 0.55	84.2 3.9 89.8 73.2	7.58 0.09 7.72 7.46	100 0 100 100
		A St Ma M	verage d. Dev. aximum inimum	768 293 1,172 0	762 290 1,153 0	826 313 1,123 0	2.20 0.34 3.17 0.69	1.22 0.40 1.81 0.01	0.49 0.16 1.29 0.01	60.0 12.3 125.8 11.9	6.51 0.65 8.98 3.97	100 2 100 76

Total number of blows analyzed: 856

Page 6 PDIPLOT2 2017.2.58.3 - Printed 30-May-2018

I-10 MOBILE RIVER - TP-23B ID OP: AFT 54" CYL, 6" WALL Date: 24-April-2018

BL# Sensors

1-856 F1: [E655] 92.7 (1.00); F2: [J762] 93.9 (1.00); F3: [P454] 145.3 (1.00); F4: [P455] 145.8 (1.00); A1: [59379] 925.0 (1.00); A2: [59462] 1055.0 (1.00); A3: [K5647] 334.0 (1.00); A4: [K5943] 368.0 (1.00)

BL# Comments

1 Template (Reference) El. = 11.25', Mudline El. = -12.3'

Time Summary

Drive 17 minutes 50 seconds 10:35 AM - 10:53 AM (4/24/2018) BN 1 - 488

- Stop 53 minutes 6 seconds 10:53 AM 11:46 AM
- Drive 10 minutes 2 seconds 11:46 AM 11:56 AM BN 489 856

Total time [01:20:59] = (Driving [00:27:53] + Stop [00:53:06])

Page 1 PDIPLOT2 2017.2.58.3 - Printed 30-May-2018

I-10 N	-10 MOBILE RIVER - TP-23B 1DAY RS 54" CYL, 6" WALL										
	001 78 in	2						D	SD· 01	50 k/ft3	
	103 00 ft								EM: 7 778	33 kei	
WS.	15 500 0 f/	2								70	
DV7.	Movimum	S Casa Math	d Canadi	$h_{1}(10-0.7)$	TOV	Toncion	Stroce May	imum Ei	UL Popord S	Corch	
	Moximum	Case Metho	od Capacii	$V_{10} = 0.7$	EMV	Movimum	Eporav	iniuni - Fu	III Recold S	bealch	
		Case Metric		ly (JC=0.8)		Hommer	Stroko				
Cev	Comprose	ion Stroce N	lovimum				Subke				
COA.	Compress	ion Stress in	A Rottom	of Dilo	DIA.	integrity r					
<u>CSD</u> .					COV	COD	TOV		сти		
DL#	DLC	KA/	KA0 kina	KA2 kina	CSX koi	CSB	13A koi		51K #	DIA (%)	
1	01/11	1 000	KIPS 064	KIPS 957	2 00	0.44	0.14	K-IL 57 0		(70)	
1	04	1,099	004 606	007	2.00	2.41	0.14	57.0 65.0	0.00	100	
2	04	991	696	960	3.33	2.71	0.13	05.2	0.37	100	
3	84	757	666	913	3.58	2.84	0.17	75.9	6.72	100	
4	84	791	781	980	4.02	2.98	0.42	92.3	7.28	100	
5	84	910	882	1,016	4.52	3.24	0.73	113.1	8.23	100	
6	84	926	888	1,040	4.63	3.26	0.82	120.0	8.31	100	
7	84	962	914	995	4.74	3.26	0.96	123.6	8.48	100	
8	60	992	933	1,016	4.86	3.26	1.06	131.8	8.70	100	
9	60	1,020	954	1,014	4.97	3.23	1.19	136.1	8.84	100	
10	60	1,021	959	1,005	4.92	3.18	1.22	132.9	8.75	100	
11	60	1,029	964	999	4.99	3.13	1.31	136.5	8.89	100	
12	60	1,028	973	1,009	4.87	3.20	1.27	133.9	8.61	100	
13	36	1,026	965	957	4.89	3.10	1.28	133.6	8.66	100	
14	36	1,052	976	948	5.10	3.15	1.46	144.2	9.07	100	
15	36	1,032	962	938	4.98	3.10	1.40	138.4	8.79	100	
16	36	708	632	766	4.88	3.04	1.60	120.2	8.53	100	
	Average	959	875	963	4.51	3.07	0.95	115.9	8.28	100	
	Std. Dev	110	113	68	0.67	0.23	0.48	27.0	0.79	0	
	Maximum	1.099	976	1.040	5.10	3.26	1.60	144.2	9.07	100	
	Minimum	708	632	766	2.80	2.41	0.13	57.0	6.37	100	

Total number of blows analyzed: 16

BL# Sensors

1-16 F1: [E655] 92.7 (1.00); F2: [J762] 93.9 (1.00); F3: [P454] 145.3 (1.00); F4: [P455] 145.8 (1.00); A1: [59379] 925.0 (1.00); A2: [59462] 1055.0 (1.00); A3: [K5647] 334.0 (1.00); A4: [K5943] 368.0 (1.00)

BL# Comments

16 7BL/1", 5BL/1", 3BL/1"

Time Summary

Drive 21 seconds 3:05 PM - 3:05 PM BN 1 - 16

Applied Foundation Testing, Inc. - PDIPLOT2 Ver 2017.2.58.3 - Case Method & iCAP® Results

Page 1 PDIPLOT2 2017.2.58.3 - Printed 30-May-2018

I-10 N OP: A	10 MOBILE RIVER - TP-23B 17DAY RS 54" CYL, 6" WALL DP: AFT 54" CYL, 6" WALL Date: 11-May-2018										
AR:	904.78 in	2							SP: 0.1	150 k/ft^3	
LE:	103.00 ft								EM: 7.778	.33 ksi	
WS:	15.500.0 f/s	S							JC: 0	.70	
RX7:	X7: Maximum Case Method Capacity (JC=0.7) TSX: Tension Stress Maximum - Full Record Search										
RX8:	X8: Maximum Case Method Capacity (JC=0.8) EMX: Maximum Energy										
RA2:	Auto Capa	city Frictio	n Piles) ()	STK:	Hammer S	Stroke				
CSX:	Compress	ion Stress	Maximum		BTA:	Integrity F	actor (1)				
CSB:	Compress	ion Stress	at Bottom	of Pile		0,1					
BL#	BLC	RX7	RX8	RA2	CSX	CSB	TSX	EMX	STK	BTA	
	bl/ft	kips	kips	kips	ksi	ksi	ksi	k-ft	ft	(%)	
1	48	1,250	980	961	3.24	2.80	0.11	68.5	0.00	100	
2	48	1,017	983	1,101	5.57	4.08	0.58	172.3	10.63	100	
3	48	1,070	1,002	1,121	6.07	4.04	1.26	198.2	11.59	100	
4	48	995	947	1,037	5.75	3.84	1.20	176.4	10.69	100	
5	36	891	854	935	5.55	3.65	1.28	164.1	10.05	100	
6	36	841	799	954	4.75	3.32	0.71	123.8	8.61	100	
7	36	937	895	1,040	5.10	3.45	0.85	145.7	9.12	100	
8	36	1,054	989	1,107	5.59	3.62	1.16	171.0	10.45	100	
9	36	1,020	964	1,121	5.85	3.74	1.41	185.4	10.75	100	
10	36	950	890	1,010	5.64	3.67	1.40	171.3	10.75	100	
11	36	847	812	1,004	4.69	3.24	0.67	125.4	8.23	100	
12	36	973	916	1,079	5.15	3.36	1.03	145.9	9.78	100	
13	36	744	673	832	5.12	3.36	1.46	136.0	9.07	100	
	Average	968	900	1,023	5.24	3.55	1.01	152.6	9.98	100	
	Std. Dev.	121	92	83	0.70	0.34	0.39	32.8	0.98	0	
I	Maximum	1,250	1,002	1,121	6.07	4.08	1.46	198.2	11.59	100	
	Minimum	744	673_	832	3.24	2.80	0.11	68.5	8.23	100	

Total number of blows analyzed: 13

BL# Sensors

1-13 F1: [E655] 92.7 (1.00); F2: [J762] 93.9 (1.00); F3: [P454] 145.3 (1.00); F4: [P455] 145.8 (1.00); A1: [59379] 925.0 (1.00); A2: [59462] 1055.0 (1.00); A3: [K5647] 334.0 (1.00); A4: [K5943] 368.0 (1.00)

BL# Comments

13 4BL/1", 3BL/1", 3BL/1"

Time Summary

Drive 19 seconds 8:16 AM - 8:16 AM BN 1 - 13

Appendix C CAPWAP Signal Matching Analysis Output TP-23B

I-10 over Mobile River Bridge Load Test Program

ALDOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

Applied Foundation Testing, Inc.

Pile Driving Analyzer ®

PROJECT: I-10 MOBILE RIVER PILE NAME: TP-23B ID DESCR: 54" CYL, 6" WALL OPERATOR: AFT FILE: TP-23B ID ana 4/24/2018 11:56:24 AM Blow Number 853

Pile Properties

LE 103.00 ft AR 904.78 in^2 ΕM 7778.33 ksi SP 0.150 k/ft3 WS 15500.0 f/s EA/C 454.0 ksec/ft 2L/C 13.30 ms JC 0.85 [] LΡ 110.19 ft

RMX 1049 kips RX9 1029 kips RA2 994 kips CSX 2.88 ksi CSB 1.58 ksi TSX 0.71 ksi EMX 86.6 k-ft

STK 7.72 ft BTA 100 (%)

Sensors

F1: [E655] 92.7 (1) F2: [J762] 93.9 (1) F3: [P454] 145.3 (1) F4: [P455] 145.8 (1) A1: [59379] 925 g's/v (1) A2: [59462] 1055 g's/v (1) A3: [K5647] 334 mv/5000g's (1) A4: [K5943] 368 mv/5000g's (1) CLIP: OK

I-10 MOBILE RIVER; Pile: TP-23B ID	Test: 24-Apr-2018 11:56
54'' CYL, 6'' WALL; Blow: 853	CAPWAP(R) 2014-2
Applied Foundation Testing, Inc.	OP: AFT
About the CAPWAP Results	

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. I-10 MOBILE RIVER; Pile: TP-23B ID 54'' CYL, 6'' WALL; Blow: 853 Applied Foundation Testing, Inc.

			CAPWA	AP SUMMARY	RESULTS					
Total CAP	WAP Capacity	: 1050	.0; along	Shaft	379.0; at	Тое	671.0	kips		
Soil	Dist.	Depth	Ru	Force	Sum	L	Unit	Uni	t	Smith
Sgmnt	Below	Below		in Pile	of	Re	esist.	Resist	. 1	Damping
No.	Gages	Grade			Ru	. (I	epth)	(Area)	Factor
	ft	ft	kips	kips	kips	ki	.ps/ft	ks	f	s/ft
				1050.0						
1	23.3	6.8	0.0	1050.0	0.0		0.00	0.0	0	0.00
2	29.9	13.4	0.0	1050.0	0.0		0.00	0.0	0	0.00
3	36.5	20.0	2.0	1048.0	2.0		0.30	0.0	2	0.15
4	43.2	26.7	4.0	1044.0	6.0		0.60	0.0	4	0.15
5	49.8	33.3	8.0	1036.0	14.0		1.20	0.0	9	0.15
6	56.5	40.0	10.0	1026.0	24.0		1.50	0.1	1	0.15
7	63.1	46.6	10.0	1016.0	34.0		1.50	0.1	1	0.15
8	69.8	53.3	25.0	991.0	59.0		3.76	0.2	7	0.15
9	76.4	59.9	45.0	946.0	104.0		6.77	0.4	8	0.15
10	83.1	66.6	50.0	896.0	154.0		7.52	0.5	3	0.15
11	89.7	73.2	70.0	826.0	224.0		10.53	0.7	5	0.15
12	96.4	79.9	75.0	751.0	299.0		11.29	0.8	0	0.15
13	103.0	86.5	80.0	671.0	379.0		12.04	0.8	5	0.15
Avg. Sh	aft		29.2				4.38	0.3	1	0.15
То	e		671.0					42.1	9	0.13
Soil Mode	l Parameters	/Extensi	ons			Shaft	Тс	e		
Quake		(i	n)			0.04	0.6	8		
Case Damp:	ing Factor					0.13	0.1	.9		
Damping T	ype				Vi	scous	Viscou	s		
Unloading	Quake	(%	of loadin	ng quake)		30	4	4		
Reloading	Level	(%	of Ru)			100	10	0		
Unloading	Level	(%	of Ru)			0				
Soil Plug	Weight	(k	ips)				1.01	.6		
CAPWAP mat	tch quality	=	3.31	(Wa	ave Up Mato	h);	RSA = 0			
Observed:	Final Set	=	0.23 in	n; Blo	w Count	=	52	b/ft		
Computed:	Final Set	=	0.23 in	n; Blo	ow Count	=	52	b/ft		
max. Top	Comp. Stress	=	2.9 ks	si (1	.= 28.5 ms	, max	= 1.025	x Top)		
max. Comp	. Stress	=	3.0 ks	si (2	2= 69.8 ft	;, T=	32.8 ms	5)		
max. Tens	. Stress	=	-0.70 ks	si (2	23.3 ft	;, T=	40.3 ms	5)		
max. Energ	JY (EMX)	=	86.7 k:	ip-ft; ma	x. Measure	d Top	Displ.	(DMX)=	0.81	in

I-10 MOBILE RIVER; Pile: TP-23B ID 54'' CYL, 6'' WALL; Blow: 853 Applied Foundation Testing, Inc. Test: 24-Apr-2018 11:56 CAPWAP(R) 2014-2 OP: AFT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	2639.7	-267.2	2.9	-0.30	86.7	5.6	0.81
2	6.6	2642.2	-365.3	2.9	-0.40	86.7	5.6	0.81
4	13.3	2647.5	-522.5	2.9	-0.58	86.6	5.6	0.80
6	19.9	2653.8	-619.5	2.9	-0.68	86.4	5.6	0.80
8	26.6	2661.5	-630.0	2.9	-0.70	86.1	5.6	0.79
10	33.2	2670.5	-544.2	3.0	-0.60	85.8	5.5	0.78
12	39.9	2677.4	-391.6	3.0	-0.43	85.1	5.5	0.77
14	46.5	2682.1	-390.6	3.0	-0.43	84.1	5.5	0.75
16	53.2	2683.3	-302.9	3.0	-0.33	82.9	5.4	0.74
18	59.8	2686.2	-145.3	3.0	-0.16	81.6	5.4	0.73
20	66.5	2693.4	-119.0	3.0	-0.13	80.5	6.2	0.73
21	69.8	2706.8	-127.6	3.0	-0.14	80.4	6.6	0.72
22	73.1	2676.7	-130.8	3.0	-0.14	77.9	6.9	0.72
23	76.4	2672.1	-138.3	3.0	-0.15	77.8	7.2	0.72
24	79.7	2546.7	-136.9	2.8	-0.15	73.4	7.3	0.71
25	83.1	2457.1	-145.6	2.7	-0.16	73.3	7.4	0.71
26	86.4	2240.4	-141.4	2.5	-0.16	68.2	7.3	0.71
27	89.7	2071.3	-146.0	2.3	-0.16	68.1	7.2	0.70
28	93.0	1739.8	-137.6	1.9	-0.15	61.0	7.5	0.70
29	96.4	1497.3	-146.3	1.7	-0.16	60.9	7.6	0.70
30	99.7	1172.9	-135.4	1.3	-0.15	53.2	7.8	0.69
31	103.0	1164.0	-140.0	1.3	-0.15	45.7	7.8	0.69
Absolute	69.8			3.0			(T =	32.8 ms)
	23.3				-0.70		(Т =	40.3 ms)

I-10 MOE	BILE RIVER	; Pile:	TP-23B I	D				Test: 24	-Apr-20	18 11 : 56
54'' CYI	L, 6'' WAL	L; Blow:	853					c	APWAP (R) 2014-2
Applied	Foundatio	n Testin	g, Inc.							OP: AFT
				CAS	SE METHO	D				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	1669.4	1315.6	961.8	608.0	254.2	0.0	0.0	0.0	0.0	0.0
RX	1669.4	1378.1	1334.1	1290.0	1246.0	1201.9	1157.9	1113.8	1069.8	1029.0
RU	1669.4	1315.6	961.8	608.0	254.2	0.0	0.0	0.0	0.0	0.0
RAU =	789.0 (k	ips); R	A2 =	996.7 (ki	ips)					
Current	CAPWAP Ru	= 1050.	0 (kips)	; Corresp	ponding a	J(RP)= 0.	.18; J(R)	K) = 0.85	i	
VMD	K TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/s	s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
5.3	7 28.53	2602.8	2604.8	2604.8	0.81	0.23	0.23	86.6	1992.0	987

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	ft²	ksi	lb/ft ³	ft
	0.0	6.28	7778.3	150.000	14.14
	103.0	6.28	7778.3	150.000	14.14
Toe Area		15.90	ft ²		

Top Segment Length 3.32 ft, Top Impedance 454 kips/ft/s

Wave Speed: Pile Top 15500.0, Elastic 15500.0, Overall 15488.7 ft/s Pile Damping 2.00 %, Time Incr 0.215 ms, 2L/c 13.3 ms

Total volume: 647.168 ft^{3;} Volume ratio considering added impedance: 1.000

Applied Foundation Testing, Inc.

Pile Driving Analyzer ®

Project Information PROJECT: I-10 MOBILE RIVER PILE NAME: TP-23B 1DAY RS DESCR: 54" CYL, 6" WALL OPERATOR: AFT FILE: TP-23B 1DAY RS ana 4/25/2018 3:05:19 PM

Pile Properties

Blow Number 14

LE 103.00 ft AR 904.78 in^2 ΕM 7778.33 ksi SP 0.150 k/ft3 WS 15500.0 f/s EA/C 454.0 ksec/ft 2L/C 13.30 ms JC 0.70 [] LΡ 110.47 ft

Quantity Results

 RX7
 1052 kips

 RX8
 976 kips

 RA2
 948 kips

 CSX
 5.10 ksi

 CSB
 3.15 ksi

 TSX
 1.46 ksi

 EMX
 144.2 k-ft

 STK
 9.07 ft

 BTA
 100 (%)

Sensors

F1: [E655] 92.7 (1) F2: [J762] 93.9 (1) F3: [P454] 145.3 (1) F4: [P455] 145.8 (1) A1: [59379] 925 g's/v (1) A2: [59462] 1055 g's/v (1) A3: [K5647] 334 mv/5000g's (1) A4: [K5943] 368 mv/5000g's (1) CLIP: OK 5000

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. I-10 MOBILE RIVER; Pile: TP-23B 1DAY RS 54" CYL, 6" WALL; Blow: 14 Applied Foundation Testing, Inc.

			CAPW	AP SUMMAR	RESULTS				
Total CAP	WAP Capacit	y: 1050	.0; along	Shaft	549.0; at	Тое	501.0	kips	
Soil	Dist.	Depth	Ru	Force	Sum		Unit	Unit	t Smith
Sgmnt	Below	Below		in Pile	of	Re	sist.	Resist	. Damping
No.	Gages	Grade			Ru	(I	epth)	(Area) Factor
	ft	ft	kips	kips	kips	ki	.ps/ft	ks	f s/ft
				1050.0					
1	23.3	6.8	0.0	1050.0	0.0		0.00	0.0	0.00
2	29.9	13.4	2.0	1048.0	2.0		0.30	0.02	2 0.30
3	36.5	20.0	30.0	1018.0	32.0		4.51	0.3	2 0.30
4	43.2	26.7	35.0	983.0	67.0		5.27	0.3	7 0.30
5	49.8	33.3	32.0	951.0	99.0		4.82	0.34	4 0.30
6	56.5	40.0	30.0	921.0	129.0		4.51	0.3	2 0.30
7	63.1	46.6	40.0	881.0	169.0		6.02	0.4	3 0.30
8	69.8	53.3	50.0	831.0	219.0		7.52	0.5	3 0.30
9	76.4	59.9	50.0	781.0	269.0		7.52	0.5	3 0.30
10	83.1	66.6	55.0	726.0	324.0		8.28	0.5	9 0.30
11	89.7	73.2	70.0	656.0	394.0		10.53	0.7	5 0.30
12	96.4	79.9	75.0	581.0	469.0		11.29	0.8	0.30
13	103.0	86.5	80.0	501.0	549.0		12.04	0.8	5 0.30
Avg. Sh	aft		42.2				6.35	0.4	5 0.30
Тс	e		501.0					31.5	0 0.15
Soil Mode	l Parameter	s/Extensi	ons			Shaft	Тс	e	
Quake		(i:	n)			0.04	0.4	:0	
Case Damp	ing Factor					0.36	0.1	.7	
Damping T	ype				Vi	scous	Viscou	s	
Unloading	Quake	(%	of loadi	ng quake)		30	8	5	
Reloading	Level	(%	of Ru)			100	10	0	
Unloading	Level	(%	of Ru)			0			
Resistanc	e Gap (incl	uded in T	oe Quake)	(in)			0.0	0	
Soil Plug	Weight	(k	ips)				0.70	0	
	tch quality		2 45	(141	ave IIn Mato	h) •	PGA - 0		
Observed.	Final Set	_	0.33 i	n• Blo	w Count	=	36	b/ft	
Computed:	Final Set	=	0.34 i	n; Blo	ow Count	=	36	b/ft	
max. Top	Comp. Stres	s =	5.2 k	si (1	[= 27.2 ms	, max	= 1.025	x Top)	
max. Comp	. Stress	=	5.3 k	si (2	Z= 36.5 ft	, T=	29.4 ms	5)	
max. Tens	. Stress	=	-1.36 k	si (2	23.3 ft	, T=	39.0 ms	5)	
max. Energ	gy (EMX)	=	144.0 k	ip-ft; ma	x. Measure	d Top	Displ.	(DMX)=	0.77 in
I-10 MOBILE RIVER; Pile: TP-23B 1DAY RS 54" CYL, 6" WALL; Blow: 14 Applied Foundation Testing, Inc. Test: 25-Apr-2018 15:05 CAPWAP(R) 2014-2 OP: AFT

			EXT	REMA TABLE				
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	4698.4	-725.1	5.2	-0.80	144.0	10.1	0.77
2	6.6	4701.0	-794.5	5.2	-0.88	143.9	10.0	0.76
4	13.3	4707.1	-937.1	5.2	-1.04	143.7	10.0	0.76
6	19.9	4717.9	-1184.1	5.2	-1.31	143.4	10.0	0.75
8	26.6	4747.9	-1211.2	5.2	-1.34	143.0	9.9	0.74
10	33.2	4791.2	-1022.7	5.3	-1.13	142.1	9.8	0.73
12	39.9	4728.8	-859.6	5.2	-0.95	137.1	9.6	0.72
14	46.5	4645.8	-794.2	5.1	-0.88	131.4	9.5	0.71
16	53.2	4580.7	-933.5	5.1	-1.03	126.1	9.4	0.70
18	59.8	4535.9	-915.9	5.0	-1.01	121.4	9.2	0.69
20	66.5	4467.7	-634.1	4.9	-0.70	115.4	9.0	0.68
21	69.8	4505.6	-362.0	5.0	-0.40	115.3	8.9	0.68
22	73.1	4368.2	-184.8	4.8	-0.20	107.7	8.8	0.68
23	76.4	4409.3	-65.7	4.9	-0.07	107.6	8.7	0.67
24	79.7	4279.0	-111.7	4.7	-0.12	99.8	8.6	0.67
25	83.1	4296.0	-39.9	4.7	-0.04	99.7	8.6	0.67
26	86.4	4073.4	-12.6	4.5	-0.01	90.8	8.8	0.66
27	89.7	3897.2	0.0	4.3	0.00	90.7	9.9	0.66
28	93.0	3343.9	0.0	3.7	0.00	78.8	11.0	0.66
29	96.4	2871.2	0.0	3.2	0.00	78.8	11.9	0.66
30	99.7	2000.4	0.0	2.2	0.00	65.2	12.5	0.66
31	103.0	1585.9	0.0	1.8	0.00	51.2	12.7	0.66
Absolute	36.5			5.3			(T =	29.4 ms)
	23.3				-1.36		(т =	39.0 ms)

I-10 MO	BILE RIVER	; Pile:	TP-23B 1	DAY RS				Test: 25	-Apr-20	18 15 : 05
54" CYL	, 6" WALL;	Blow: 1	4					C	'APWAP (R) 2014-2
Applied	Foundatio	n Testin	g, Inc.							OP: AFT
				CA	SE METHOI	2				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	3325.7	2728.1	2130.5	1532.9	935.3	337.7	0.0	0.0	0.0	0.0
RX	3325.7	2728.1	2130.5	1532.9	1328.0	1232.5	1139.1	1052.9	977.4	935.3
RU	3569.2	2995.9	2422.7	1849.4	1276.2	703.0	129.7	0.0	0.0	0.0
RAU =	840.2 (k	ips); R	A2 =	949.0 (k:	ips)					
Current	CAPWAP Ru	= 1050.	0 (kips)	; Corres	ponding d	J(RP)= 0.	.38; J(R)	(x) = 0.70		
VM	X TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft/	s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
10.	3 27.03	4678.2	4623.4	4623.4	0.77	0.33	0.33	144.4	3152.0	1253

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	ft ²	ksi	lb/ft ³	ft
	0.0	6.28	7778.3	150.000	14.14
	103.0	6.28	7778.3	150.000	14.14
Toe Area		15.90	ft²		

Top Segment Length 3.32 ft, Top Impedance 454 kips/ft/s

Wave Speed: Pile Top 15500.0, Elastic 15500.0, Overall 15488.7 ft/s Pile Damping 2.00 %, Time Incr 0.215 ms, 2L/c 13.3 ms

Total volume: 647.168 ft^{3;} Volume ratio considering added impedance: 1.000

Applied Foundation Testing, Inc.

Pile Driving Analyzer ®

Project Information

PROJECT: I-10 MOBILE RIVER PILE NAME: TP-23B 17DAY RS DESCR: 54" CYL, 6" WALL OPERATOR: AFT FILE: TP-23B 17DAY RS ana 5/11/2018 8:16:05 AM Blow Number 3

Pile Properties

LE 103.00 ft AR 904.78 in^2 ΕM 7778.33 ksi SP 0.150 k/ft3 WS 15500.0 f/s EA/C 454.0 ksec/ft 2L/C 13.30 ms JC 0.70 [] LΡ 110.56 ft

Quantity Results

 RX7
 1070 kips

 RX8
 1002 kips

 RA2
 1121 kips

 CSX
 6.07 ksi

 CSB
 4.04 ksi

 TSX
 1.26 ksi

 EMX
 198.2 k-ft

 STK
 11.59 ft

 BTA
 100 (%)

Sensors

F1: [E655] 92.7 (1) F2: [J762] 93.9 (1) F3: [P454] 145.3 (1) F4: [P455] 145.8 (1) A1: [59379] 925 g's/v (1) A2: [59462] 1055 g's/v (1) A3: [K5647] 334 mv/5000g's (1) A4: [K5943] 368 mv/5000g's (1) CLIP: OK

The CAPWAP program performs a signal matching or reverse analysis based on measurements taken on a deep foundation under an impact load. The program is based on a one-dimensional mathematical model. Under certain conditions, the model only crudely approximates the often complex dynamic situations.

The CAPWAP analysis relies on the input of accurately measured dynamic data plus additional parameters describing pile and soil behavior. If the field measurements of force and velocity are incorrect or were taken under inappropriate conditions (e.g., at an inappropriate time or with too much or too little energy) or if the input pile model is incorrect, then the solution cannot represent the actual soil behavior.

Generally the CAPWAP analysis is used to estimate the axial compressive pile capacity and the soil resistance distribution. The long-term capacity is best evaluated with restrike tests since they incorporate soil strength changes (set-up gains or relaxation losses) that occur after installation. The calculated load settlement graph does not consider creep or long term consolidation settlements. When uplift is a controlling factor in the design, use of the CAPWAP results to assess uplift capacity should be made only after very careful analysis of only good measurement quality, and further used only with longer pile lengths and with nominally higher safety factors.

CAPWAP is also used to evaluate driving stresses along the length of the pile. However, it should be understood that the analysis is one dimensional and does not take into account bending effects or local contact stresses at the pile toe.

Furthermore, if the user of this software was not able to produce a solution with satisfactory signal "match quality" (MQ), then the associated CAPWAP results may be unreliable. There is no absolute scale for solution acceptability but solutions with MQ above 5 are generally considered less reliable than those with lower MQ values and every effort should be made to improve the analysis, for example, by getting help from other independent experts.

Considering the CAPWAP model limitations, the nature of the input parameters, the complexity of the analysis procedure, and the need for a responsible application of the results to actual construction projects, it is recommended that at least one static load test be performed on sites where little experience exists with dynamic behavior of the soil resistance or when the experience of the analyzing engineer with both program use and result application is limited.

Finally, the CAPWAP capacities are ultimate values. They MUST be reduced by means of an appropriate factor of safety to yield a design or working load. The selection of a factor of safety should consider the quality of the construction control, the variability of the site conditions, uncertainties in the loads, the importance of structure and other factors. The CAPWAP results should be reviewed by the Engineer of Record with consideration of applicable geotechnical conditions including, but not limited to, group effects, potential settlement from underlying compressible layers, soil resistances provided from any layers unsuitable for long term support, as well as effective stress changes due to soil surcharges, excavation or change in water table elevation.

The CAPWAP analysis software is one of many means by which the capacity of a deep foundation can be assessed. The engineer performing the analysis is responsible for proper software application and the analysis results. Pile Dynamics accepts no liability whatsoever of any kind for the analysis solution and/or the application of the analysis result. I-10 MOBILE RIVER; Pile: TP-23B 17DAY RS 54'' CYL, 6'' WALL; Blow: 3 Applied Foundation Testing, Inc.

			CAPWAP SUM	MARY RESULT	ſS		
Total CAPWA	P Capacity:	1080.0;	along Shaft	663.0;	at Toe	417.0 kips	
Soil	Dist.	Depth	Ru	Force	S	um Unit	Unit
Sgmnt	Below	Below		in Pile	(of Resist.	Resist.
No.	Gages	Grade			1	Ru (Depth)	(Area)
	ft	ft	kips	kips	kij	ps kips/ft	ksf
				1080.0			
1	23.3	6.8	5.0	1075.0	5	.0 0.74	0.05
2	29.9	13.4	25.0	1050.0	30	.0 3.76	0.27
3	36.5	20.0	35.0	1015.0	65	.0 5.27	0.37
4	43.2	26.7	45.0	970.0	110	.0 6.77	0.48
5	49.8	33.3	50.0	920.0	160	.0 7.52	0.53
6	56.5	40.0	50.0	870.0	210	.0 7.52	0.53
7	63.1	46.6	50.0	820.0	260	.0 7.52	0.53
8	69.8	53.3	50.0	770.0	310	.0 7.52	0.53
9	76.4	59.9	55.0	715.0	365	.0 8.28	0.59
10	83.1	66.6	58.0	657.0	423	.0 8.73	0.62
11	89.7	73.2	70.0	587.0	493	.0 10.53	0.75
12	96.4	79.9	80.0	507.0	573	.0 12.04	0.85
13	103.0	86.5	90.0	417.0	663	.0 13.54	0.96
Avg. Sha	aft		51.0			7.66	0.54
То	e		417.0				26.22
Soil Model	Parameters/E	xtensions	5		Shaft	Toe	
Smith Dampi	ng Factor				0.40	0.19	
Quake		(in)			0.04	0.48	
Case Dampin	ng Factor				0.58	0.17	
Damping Typ	be				Viscous	Viscous	
Unloading Q	uake	(% of	loading qua	ke)	30	99	
Reloading I	level	(% of	Ru)	-	100	100	
Unloading I	level	(% of	Ru)		0		
CAPWAP matc	h quality	=	2.89	(Wave Up M	Match) ; R	RSA = 0	
Observed: F	inal Set	=	0.25 in;	Blow Count	: =	48 b/ft	
Computed: F	inal Set	=	0.25 in;	Blow Count	: =	47 b/ft	
max. Top Co	mp. Stress	=	6.2 ksi	(T= 27.2	2 ms, max=	1.027 x Top)	
max. Comp.	Stress	=	6.3 ksi	(Z= 29.9) ft, T=	29.0 ms)	
max. Tens.	Stress	= -	1.13 ksi	(Z= 26.6	5 ft, T=	38.8 ms)	
max. Energy	r (EMX)	= 1	96.7 kip-ft;	max. Meas	sured Top	Displ. (DMX)=	0.76 in

I-10 MOBILE RIVER; Pile: TP-23B 17DAY RS 54'' CYL, 6'' WALL; Blow: 3 Applied Foundation Testing, Inc. Test: 11-May-2018 08:16 CAPWAP(R) 2014-2 OP: AFT

			EXT	TREMA TABL	E			
Pile	Dist.	max.	min.	max.	max.	max.	max.	max.
Sgmnt	Below	Force	Force	Comp.	Tens.	Trnsfd.	Veloc.	Displ.
No.	Gages			Stress	Stress	Energy		
	ft	kips	kips	ksi	ksi	kip-ft	ft/s	in
1	3.3	5578.6	-644.6	6.2	-0.71	196.7	11.9	0.76
2	6.6	5582.5	-691.6	6.2	-0.76	196.3	11.9	0.76
4	13.3	5597.9	-709.8	6.2	-0.78	196.0	11.9	0.76
6	19.9	5640.2	-860.7	6.2	-0.95	195.6	11.8	0.75
8	26.6	5686.5	-1019.2	6.3	-1.13	194.0	11.6	0.74
10	33.2	5643.9	-941.7	6.2	-1.04	188.3	11.4	0.73
12	39.9	5563.4	-726.7	6.1	-0.80	180.8	11.1	0.72
14	46.5	5442.9	-528.0	6.0	-0.58	171.4	10.8	0.71
16	53.2	5299.3	-582.4	5.9	-0.64	161.9	10.5	0.70
18	59.8	5159.0	-707.2	5.7	-0.78	152.5	10.3	0.69
20	66.5	5026.5	-532.1	5.6	-0.59	141.9	10.0	0.68
21	69.8	5082.8	-259.5	5.6	-0.29	141.7	9.9	0.68
22	73.1	4904.1	-94.6	5.4	-0.10	131.8	9.7	0.68
23	76.4	4963.5	-37.4	5.5	-0.04	131.7	9.6	0.67
24	79.7	4770.8	-124.0	5.3	-0.14	120.4	9.4	0.67
25	83.1	4803.3	-45.2	5.3	-0.05	120.3	9.3	0.67
26	86.4	4491.2	-27.8	5.0	-0.03	107.9	9.5	0.67
27	89.7	4295.7	0.0	4.7	0.00	107.9	10.6	0.67
28	93.0	3620.9	0.0	4.0	0.00	92.1	11.8	0.66
29	96.4	3102.8	0.0	3.4	0.00	92.0	12.8	0.66
30	99.7	2094.1	0.0	2.3	0.00	73.0	13.3	0.66
31	103.0	1818.2	0.0	2.0	0.00	52.0	13.5	0.66
Absolute	29.9			6.3			(T =	29.0 ms)
	26.6				-1.13		(T =	38.8 ms)

I-10 MC	BILE RIVER	; Pile:	TP-23B 1	7DAY RS				Test: 11	-May-20	18 08 : 16
54'' CY	7L, 6'' WAL	L; Blow:	3					c	CAPWAP (R) 2014-2
Applied	l Foundatio	n Testin	g, Inc.							OP: AFT
				CAS	SE METHO	D				
J =	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
RP	4412.3	3748.5	3084.6	2420.8	1757.0	1093.2	429.4	0.0	0.0	0.0
RX	4412.3	3748.5	3084.6	2420.8	1757.0	1329.0	1149.2	1080.4	1014.5	969.9
RU	4888.7	4272.5	3656.4	3040.2	2424.0	1807.9	1191.7	575.5	0.0	0.0
RAU =	776.2 (k	ips); R	A2 = 1	190.8 (ki	ips)					
Current	CAPWAP Ru	= 1080.	0 (kips)	; Corresp	ponding .	J(RP)= 0.	.50; J(R)	c) = 0.70)	
vi	AX TVP	VT1*Z	FT1	FMX	DMX	DFN	SET	EMX	QUS	KEB
ft	/s ms	kips	kips	kips	in	in	in	kip-ft	kips	kips/in
12	.3 27.03	5574.7	5475.6	5491.0	0.76	0.25	0.25	197.6	4710.9	869

PILE PROFILE AND PILE MODEL

	Depth	Area	E-Modulus	Spec. Weight	Perim.
	ft	ft ²	ksi	lb/ft ³	ft
	0.0	6.28	7778.3	150.000	14.14
	103.0	6.28	7778.3	150.000	14.14
Toe Area		15.90	ft ²		

Top Segment Length 3.32 ft, Top Impedance 454 kips/ft/s

Wave Speed: Pile Top 15500.0, Elastic 15500.0, Overall 15488.7 ft/s Pile Damping 2.00 %, Time Incr 0.215 ms, 2L/c 13.3 ms

Total volume: 647.168 ft³; Volume ratio considering added impedance: 1.000

Appendix D

Axial Compressive Statnamic Rapid Load Testing Graphical Results TP-23B

I-10 over Mobile River Bridge Load Test Program

ALDOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

Applied Statnamic Load vs. Time from Statnamic Load Test TP-23B

Appendix E Relevant Project Documents TP-23B

I-10 over Mobile River Bridge Load Test Program ALDOT Project No.: IM-I010(341)

DOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

GENERAL PROJECT NOTES

- 200 THE CONTRACTOR SHALL SUBMIT SHOP DRAWINGS DIRECTLY TO THE MATERIALS AND TESTS ENGINEER OF ALL RAPID LOAD TESTS, SHAFT LOAD TESTS AND STATIC LOAD TESTS FOR APPROVAL.
- THE CONTRACTOR SHALL PROVIDE REPORTS TO THE MATERIALS AND TESTS ENGINEER OF ALL STATIC LOAD TESTS, RAPID LOAD TESTS AND DYNAMIC TESTS, PREPARED BY SPECIALTY ENGINEERING FIRMS.
- 202 THE CONTRACTOR SHALL SUBMIT AN INSTALLATION PLAN FOR REVIEW AND APPROVAL FOR ALL TEST PILES IN THIS PROJECT.
- SOI LOCATION TP-10:

	ALL FOUR TEST PILES SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO PLANNED TIP ELEVATION OR TO REFUSAL, WHICHEVER COMES FIRST (NO JETTING). CONTRACTOR SHALL PLAN TO RESTRIKE MEASUREMENT ON EACH PILE FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS AT APPROXIMATELY I DAY AFTER INITIAL DRIVE. CONTRACTOR SHALL PLAN FOR RESTRIKE MEASUREMENT ON PILES TP-IOA-I AND TP-IOB-I FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS AT APPROXIMATELY 7 DAYS AFTER INITIAL DRIVE. CONTRACTOR SHALL PERFORM STATIC LOAD TEST ON PILES TP-IOA-2 AND TP-IOB-2 IN ACCORDANCE WITH APPLICABLE
302	SPECIAL PROVISIONS CONTRACTOR SHALL PLAN FOR RESTRIKE MEASUREMENT ON PILES TP-IOA-2 AND TP-IOB-2 FOR DYNAMIC LOAD TESTING AN SIGNAL MATCHING ANALYSIS WITHIN 7 DAYS AFTER STATIC LOAD TEST. LOCATION TP-WPA STEEL PIPE PILE:
	PILE MAY BE INSTALLED WITH ONE SPLICE, AND FINAL PIECE SHALL NOT BE LESS THAN 75 FT IN LENGTH.
	VIBRATORY HAMMER MAY BE USED TO INSTALL FIRST PIECE, AFTER SPLICING THE PILE SHALL BE DRIVEN TO THE TARGET TIP FLEVATION USING IMPACT HAMMER.
	CONTRACTOR TO PROVIDE HAMMER SUFFICIENT TO DRIVE PILE TO TIP WITH WAVE EQUATION ANALYSIS PER ALDOT SPECS, WITH TARGETED DRIVING RESISTANCE AT END OF INITIAL DRIVE NOT MORE THAN 10 BLOWS PER INCH.
	DYNAMIC MONITORING OF PILE USING PDA DURING INSTALLATION AFTER SPLICE, WITH SIGNAL Matching Analysis on selected blows near end of initial drive.
	RAPID LOAD TEST OF PILE USING 19MN RAPID LOAD TEST DEVICE BETWEEN 10 AND 21 DAYS AFTER
303	RESTRIKE BLOWS FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS WITHIN ONE WEEK AFTER COMPLETION OF RAPID LOAD TEST (RLT).
	CONTRACTOR TO PERFORM LATERAL RAPID LOAD TESTS USING RAPD LOAD TEST DEVICE AFTER COMPLETION OF AXIAL LOAD TEST(S); LATERAL RLT SHALL BE CAPABLE TO APPLY A LATERAL FORCE OF AT LEAST 1000 KIPS. LATERAL RLT SHALL BE PERFORMED IN FOUR PROGRESSIVELY LARGER INCREMENTS UP TO MAXIMUM FORCE.
	LATERAL RLT SHALL INCLUDE MEASUREMENTS OF FORCE AND TOP OF SHAFT DISPLACEMENT AND OF
	TEST SHAFT SHALL BE CONSTRUCTED USING POLYMER BASED DRILLING FLUIDS, WITH ON-SITE SUPPORT
304	LOCATION TP-04:
	JETTING OF TP-04 ALLOWED (BUT NOT REQUIRED) TO ELEVATION -70FT PILE SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO TIP ELEVATION -110FT OR TO REFUSAL, WHICHEVER COMES FIRST CONTRACTOR SHALL PLAN FOR UP TO TWO RESTRIKE MEASUREMENTS ON THIS PILE AT APPROXIMATELY I DAY AND 14 DAYS AFTER INITIAL DRIVE FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS.
305	LOCATION TP-23:
	JETTING OF TP-23A SHOULD BE PERFORMED TO ELEVATION -100FT JETTING OF TP-23B AND TP-23C ALLOWED (BUT NOT REQUIRED) TO ELEVATION -70FT PILE SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO PLANNED TIP ELEVATION OR TO REFUSAL, WHICHEVER COMES FIRST. PLANNED TIP ELEVATION: TP-23A: -130 TP-23B: -100
	TP-23C:-100 CONTRACTOR SHALL PLAN FOR RESTRIKE MEASUREMENT ON EACH PILE FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS AT ONE DAY AFTER INITIAL DRIVE AND WITHIN ONE WEEK AFTER COMPLETION OF RAPID LOAD TEST (RLT). RAPID LOAD' TEST OF EACH PILE USING 19MN RAPID LOAD TEST DEVICE NOT SOONER THAN 2 WEEKS AFTER INITIAL DRIVE
306	LOCATION TP-III:
	FOR TP-IIIA, JETTING IS ALLOWED (BUT NOT REQUIRED) TO ELEVATION -60FT FOR TP-IIIB, JETTING SHALL BE PERFORMED TO ELEVATION -90FT BOTH PILES SHALL BE IMPACT DRIVEN WITH PDA MONITORING TO TIP ELEVATION -120FT OR TO REFUSAL, WHICHEVER COMES FIRST CONTRACTOR SHALL PLAN FOR UP TO TWO RESTRIKE MEASUREMENTS ON THESE PILES AT APPROXIMATELY I DAY AND 14 DAYS AFTER INITIAL DRIVE FOR DYNAMIC LOAD TESTING AND SIGNAL MATCHING ANALYSIS.
307	TEST PILES TP-WPA AND TP-WPB SHALL BE PLACED WITHIN THE LIMITS AN EXPLORATION TRENCH.IF Required spacing is not adequate in one trench,one of the piles may be placed in an adjacent exploration trench.

- 308 THE CONTRACTOR SHALL CONTACT BILL TURNER (334-2 SECTION OF THE ALABAMA DEPARTMENT OF TRANSPORT TO STARTING WORK IN ORDER TO MAKE SURE THE EXPL
- 800 IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO COM AND DETERMINE THE EXACT LOCATION OF ALL EXISTING SHOWN ON THE PLANS OR NOT. THE LOCATION OF ANY RE OF ANY NATURE AND/OR ELECTRICAL/COMMUNICATIONS CO BY THE ENGINEER TO PREVENT ANY CONFLICTS WITH THE WILL BE LIMITED TO INCREMENTS NOT TO EXCEED 2000 MULTIPLE REQUESTS WILL BE REQUIRED FOR PROJECTS G
- 900 NPDES PERMIT COVERAGE NOT REQUIRED FOR THIS PRO
- 901 THERE SHALL BE NO FUEL TANKS STORED ON THE RIGH VEHICLES TRANSPORTING CHEMICALS, FERTILIZER, ETC., WAY.
- 902 THE CONTRACTOR SHALL FOLLOW ALL REQUIREMENTS CON AND ANY REQUIREMENTS FROM U.S. FISH AND WILDLIFE SI
- 903 THE CONTRACTOR SHALL FOLLOW THE ALDOT STANDARD MAN
 - A. THE LEAD PROJECT PROPONENT/CONTRACTOR SHALL INS OF THE POTENTIAL PRESENCE OF MANATEES AND THE N CONSTRUCTION PERSONNEL ARE RESPONSIBLE FOR OBSE OF MANATEES. THE U.S. FISH AND WILDLIFE SERVICE WO THIS SPECIES TO ACT AS A SPOTTER FOR MANATEES I
 - B. THE LEAD PROJECT PROPONENT/CONTRACTOR SHALL ADV AND CRIMINAL PENALTIES FOR HARMING, HARASSING, OR MARINE MAMMAL PROTECTION ACT OF 1972 AND THE EN
 - C. SILTATION BARRIERS SHALL BE MADE OF MATERIAL IN PROPERLY SECURED, AND ARE REGULARLY MONITORED T BLOCK MANATEE ENTRY TO, OR EXIT FROM, ESSENTIAL F
 - D. ALL VESSELS ASSOCIATED WITH THE CONSTRUCTION PRO ALL TIMES WHILE IN THE CONSTRUCTION AREA AND WH LESS THAN A FOUR-FOOT CLEARANCE FROM THE BOTTO WHENEVER POSSIBLE.
 - E. IF MANATEES ARE SEEN WITHIN 100 YARDS OF THE ACT MOVEMENT, ALL APPROPRIATE PRECAUTIONS SHALL BE I PRECAUTIONS SHALL INCLUDE THE OPERATION OF ALL M MANATEE. OPERATION OF ANY EQUIPMENT CLOSER THAN SHUTDOWN OF THAT EQUIPMENT. ACTIVITIES WILL NOT PROJECT AREA OF ITS OWN VOLITION.
 - F. ANY COLLISION WITH AND/OR INJURY TO A MANATEE SI WILDLIFE SERVICE IN DAPHNE (251-441-5181).
 - G. TEMPORARY SIGNS CONCERNING THE MANATEES SHALL B CONSTRUCTION/DREDGING ACTIVITIES. ALL SIGNS ARE T PROPONENT/CONTRACTOR UPON COMPLETION OF THE PRO WHICH READS CAUTION: MANATEE AREA WILL BE POSTED CONSTRUCTION CREWS. A SECOND SIGN SHOULD BE POS' AND SHOULD BE PLACED VISIBLE TO THE VESSEL OPER/ WHICH READS CAUTION: MANATEE HABITAT. IDLE SPEED CONSTRUCTION AREA. ALL EQUIPMENT MUST BE SHUTDO ANY COLLISION WITH AND/OR INJURY TO A MANATEE SI WILDLIFE SERVICE IN DAPHNE (251-441-5181).

904-914 OMIT

915 BASIN BOOM SHALL BE REUSED AS NECESSARY AT EACH

	3	REFERENCE PROJECT NO.	FISCAL YEAR	SHEET NO.
		IM-1010(341)	2018	2
12-6144) WITH TH ATION NO LATER ORATION TRENCHE	E ENVIRON Than two s are Ma	NMENTAL TECH) (2) WEEKS ARKED AND VI	NICAL PRIOR SIBLE.	
TACT THE VARIOU JTILITIES ON THIS QUIRED GUARDRAIL NDUITS MAY BE A SE UTILITIES.UTI LINEAR FEET PER REATER THAN 200	S UTILITY PROJECT SIGNS,FO DJUSTED ITY LINE WORKING LINEAR	OWNERS WHETHER OOTINGS AS DIRECTED LOCATE REOL DAY OPERATIO FEET IN LENO	IESTS DNS. GTH.	÷
JECT.				
OF WAY. IN AD IOT SHALL BE LE	DITION, FL FT UNATT	IEL TRUCKS O ENDED ON TH	R E RIGHT	OF
TAINED WITHIN TH RVICE.	e army c	ORPS OF ENGI	NEERS P	ERMIT
EE CONSTRUCTION	CONDITION	S LISTED BEL	ow:	
TRUCT ALL PERSON EED TO AVOID COL RVING WATER-RELA ULD RECOMMEND HI URING IN-WATER A	NEL ASSOC ISIONS WI ED ACTIV RING AN I CTIVITIES.	TATED WITH TH TH MANATEES. ITIES FOR THE NDIVIDUAL FAM	HE PROJE ALL PRESENC HILIAR WI	CT E TH
ISE ALL CONSTRUC KILLING MANATEES DANGERED SPECIES	TION PERS WHICH ARI ACT OF 19	ONNEL THAT T E PROTECTED U 973.	HERE ARE JNDER TH	E CIVIL
WHICH MANATEES CA AVOID MANATEE E	NNOT BEC NTRAPMEN	OME ENTANGLE T. BARRIERS M	D, ARE IUST NOT	
JECT SHALL OPERA LE IN WATER WHER A. ALL VESSELS WI	TE AT 'NC E THE DRA LL FOLLOW	WAKE/IDLE"S FT OF THE VE ROUTES OF D	PEEDS AT SSEL PRO DEEP WAT)VIDES ER
IVE DAILY CONSTR MPLEMENTED TO EN IOVING EQUIPMENT 50 FEET TO A MA RESUME UNTIL THE	UCTION/DR SURE THEI NO CLOSEF NATEE SHA MANATEE(S	EDGING OPERAT R PROTECTION R THAN 50 FEE LL NECESSITAT S) HAS DEPART	TION OR THESE TOF A TE IMMED ED THE	VESSEL IATE
IALL BE REPORTED	IMMEDIATE	ELY TO THE U.	S.FISH A	ND
E POSTED PRIOR T O BE REMOVED BY DJECT. A SIGN MEA IN A LOCATION PI TED IF VESSELS AF ATOR. THE SECOND IS REQUIRED IF OF WN IF A MANATEE HALL BE REPORTED) AND DUR THE LEAD SURING AT OMINENTL' E ASSOCIA SIGN SHOL ERATING A COMES WIT IMMEDIATI	RING ALL PROJECT LEAST 3 FT. Y VISIBLE TO ATED WITH THE JLD BE AT LEA VESSEL IN TI HIN 50 FEET ELY TO THE U.	BY 4 FT. WATER RI CONSTRI ST 8" BY HE OF OPERA S.FISH A	ELATED JCTION II" ATION. ND
LOCATION (WATER				
CURREN	ALABAMA DE	PARTMENT OF TRAN	SPORTATION	
THIS DRAWING REPRES TRANSPORTATION AND ANY ORGANIZATION, W OF TRANSPORTATION F	NTS DESIGNS PREPAR IS NOT TO BE COPIE HOUT THE EXPRESSE PRESENTATIVE AUTHO	ED FOR USE BY THE ALABAMA D, REPRODUCED, ALTERED, OR D WRITTEN CONSENT OF THE A DRIZED TO APPROVE THIS USE.	DEPARTMENT OF USED BY ANYONE, LABANA DEPARTME ANYONE MAKING	OR NT
UNAUTHORIZED USE OF REVISIONS	THIS UKAWING MAY E	ALABAM OF TR H409 H MONTGO	A DEPAR ANSPORTA COLISEUM BOULEV MERY, AL 36130-	TMENT TION ARD 3050
		GENERAL PROJ	ECT NOTE	S
		SPECIAL DRAWING NO.		INDEX NO

PILE TIP ELEVATIONS

			PILE TIP ELEVATION	IS AND TARGETED NON	/INAL RESISTANCE		
TEST PILE	PILE TYPE	STATION	SIDE	OFFSET	PILE LENGTH (FT)	TARGETED NOMINAL RESISTANCE (kips)	E
TP-10A-1	HP 14X89	STATION 469+20.00	RT	110	82	300	
TP-10A-2	HP 14X89	STATION 469+20.00	RT	111	82	300	
TP-10B-1	18" PPC SQUARE	STATION 469+60.00	RT	110	77	650	
TP-10B-2	18" PPC SQUARE	STATION 469+60.00	RT	110	77	650	
TP-WPA	60" STEEL PIPE	STATION 513+33.00	LT	100	175	3100	
TP-WPB	72" DRILLED SHAFT	STATION 513+53.00	LT	100	177	N/A	
TP-04	54" PPC CYLINDRICAL	STATION 574+00.00	LT	150	120	3100	_
TP-23A	54" PPC CYLINDRICAL	STATION 629+57.00	LT	150	140	3100	
TP-23B	54" PPC CYLINDRICAL	STATION 630+00.00	LT	150	110	3100	
TP-23C	30" PPC SQUARE	STATION 630+43.00	LT	150	110	1500	
TP-111A	54" PPC CYLINDRICAL	STATION 897+50.00	RT	150	130	3100	
TP-111B	54" PPC CYLINDRICAL	STATION 898+00.00	RT	150	130	3100	

RESPONSIBLE PE:	SUPERV I SOR:	DESIGNER:	PLAN SUBMITTAL OF TRANSPORTATION
DATE:	DATE	DATE:	A CONTRACT OF A

	REFERENCE PROJECT NO	FISCAL YEAR	SHEET
	IM-I010(341)	2018	2A
	and the second second		
		_	
		-	
LEVATION (FT)	ELEVATION (F)	
<u>ee</u>			
-65		-	
-65			
-60			
-60			
-170			1
-170	80	_	
-110	-00		
-130			
-100			
-100		-	
-120		-	
-120		_	
	SHEET TITLE	Ē F	ROUTE

	TP-23B 54" PPC CYLINDRICAL PILE LOAD TEST TP-23A 54" PPC CYLINDRICAL PILE LOAD TEST		P-23C 0" PPC QUARE LOAD EST	
+00 and an all solutions and and an all solutions and and an all solutions are set as a solution of a and a solution of a solu		630+00	WB I-10	
	الله الله الله الله الله الله الله الله	(1) αφορά το μου το δού σε στού του το του το	EB 1-10	n a a a a a shaa a a a a Gan - 20 ang ang ang ang a sa sa sa sa sa sa sa ang a sa sa sa sa sa sa sa sa ang a sa sa sa sa sa sa sa sa sa ang a sa sa sa sa sa sa sa sa

	REFERENCE PROJECT NO	FISCAL	SHEET
	IM-1010(341)	2018	7
	PROJECT NO 200, 201, 202 304	<u>TES</u> 2	
		6 <u>4(</u>	STA 64
			40+00
NOTE: SEE S PILE TIP ELE	HEET 2A FO	OR	
NOTE: SEE S PILE TIP ELE	HEET 2A FO	DR	ROUTE

OMDSON ENGINEERING Ion: I-10 Mobile River Bric W-23 Boring Loc: DPI-0030(005) Northing: 249770.92 180.0 ft. Soil Depth: 180.1 Imeter (in): 4-inch AAS	ge and Bay						P	RO.	EFERENCE FISCAL SHE	
Ompson Exeleterine on: I-10 Mobile River Brid W-23 Boring Loca DPI-0030(005) Northing: 249770.92 180.0 ft. Soil Depth: 180.1 meter (in): 4-inch AAS	ge and Bay					t	-	IN	M-I010(341) 2018 24	
I-10 Mobile River Brid V-23 Boring Loca DPI-0030(005) Northing: Northing: 249770.92 80.0 ft. Soil Depth: 180 AAS	ge and Bay				F	REC	co	R	O OF TEST BORIN	
W-23 Boring Local OPI-0030(005) Northing: 249770.92 80.0 ft. Soil Depth: 180. meter (in): 4-inch AAS	tion: 6224	way		-	_		-	C	ounty: Mobile	
Northing: 249770.92 80.0 ft. Soil Depth: 180. meter (in): 4-inch AAS	TE Proie	20.32 C	Offset:	15.5	1 LT	-	A	lig	nment: I-10 Bayway	
80.0 ft. Soil Depth: 180. meter (in): 4-inch AAS	9 Ea	sting:	1810	248.83	4	0	Date	Sta	rted: 11/18/2016	
meter (m). 4-men horo	ft.	Core D	epth:	0.0 ft.			Date	Co	mpleted: 11/28/2016	
CME 550X Drill Metho	I: MR	Ham	ner Ty	pe: A	uton	natic	110	120	Energy Ratio: 88%	
A Driller: The	mpson Eng	Grou	ndwat	er: TO	OB (0.0 f	t.		24 HR 0.0 ft.	
MATERIAL DESCRIPT	ON	Graphic Log	Sample Depth (ft.)	Sample No./Type	1st 6"	2nd 6"	3rd 6*	N Value	SPT N VALUE (blows/foot) PL MC LL X O X FINES CONTENT (%) A	
MC=31.1 %#200=23.0							1		10 20 30 40 30 60 70 80 90	
			-							
ledium dense			63.5	-	-		-	-		
			-	SS-14	7	11	13	24	•	
			-							
edium dense			00.0	SS-15	6	9	9	18	•	
Medium dense			73.5	55.40	0	0	11	20		
			-	33-10	9	9		20		
			78.5							
Medium dense, wet, brown, fine to medium grained, with trace gravel, POORLY GRADED SAND with SIL (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=21.3		d SILT	10.0	SS-17	14	15	10	25>	(A 00	
#200=9.7	NP NMG=21.	'								
			-							
ledium dense			83.5	55.19	11	12	12	24		
			-	00-10		14	12			
			88.5							
ense, tine to coarse grained, with	race gravel			SS-19	20	22	21	43	•	
		LEGE	ND							
SAMPLER TYPE		LLGE				1	DRILL	ING	METHOD	
AC - Auger GB - Grab I	Cuttings ag		HS	A - Hollo A - Solid	Sterr	Aug	igers ers		MR - Mud Rotary Wash RC - Rock Coring	
Cone Penetrometer NQ - Rock	lore		HA	- Hand	Auger			-		

	RECORD OF TEST BORING	tho	mpson IINEERLING			REC			Site Dec	the
Site Description: I-10 Mobile River Bridge and Bayway Boring No.: BW-23 Boring Location: 632+20.32 ALDOT PE No.: DPI-0030(005) TE Project No.: Elev.: -4.0 ft. Northing: 249770.929 Easting: Total Depth: 180.0 ft. Soil Depth: 180.0 ft. Core I Bore Hole Diameter (in): 4-inch AASHTO / ASTM Samp Drill Machine: CME 550X Drill Method: MR Ham Core Size: N/A Driller: Thompson Eng Group	County: Mobile Offset: 15.51 LT Alignment I-10 Bayway 15-1101-0228 Eng./Geo.: Chris LaFroscia 1810248.834 Date Started: 11/18/2016 Depth: 0.0 ft. Date Completed: 11/28/2016 Jling Methods: AASHTO T206 & T207 mmer Type: Automatic Indwater: TOB 0.0 ft. 24 HR 0.0 ft.	Site Description Boring No.: BW- ALDOT PE No.: Elev.: -4.0 ft. Total Depth: 180 Bore Hole Diame Drill Machine: C Core Size: N/A	I-10 Mobile River Bridge and Bay 23 Boring Location: 632+ DPI-0030(005) TE Projec Northing: 249770.929 East .0 ft. Soil Depth: 180.0 ft. ater (In): 4-inch AASHTO / ASTI ME 550X Drill Method: MR Driller: Thompson Engline	way 20.32 Offs at No.: 15-1 titing: 11 Core Depl I Sampling Hammer Groundw	et: 15.3 101-0220 310248.8 th: 0.0 ft. Method Type: // water: T	51 LT 3 34 Da 34 Da 5: AASHT Automatic OB 0.0 ft.	Alignme Eng./(te Started te Compl O T206 & En 24	ty: Mobile ent: I-10 Bayway Geo.: Chris LaFroscia t: 11/18/2016 leted: 11/28/2016 T207	ALDOT PI Elev.: 4. Total Dep Bore Hole Drill Mach Core Size	Diff. Diff. Diar Diar N/A
Image: State of the state		120.0	MATERIAL DESCRIPTION	Graphic Log Samula Darth	Sample No./Type	1st 6" 2nd 6"	9)je/ N 10	● SPT N VALUE (blows/foot) PL MC LL ★ FINES CONTENT (%) ▲ 0 20 30 40 50 60 70 80 90	41d⊕0 150.0 	0
Very dense	93.5 <u>SS-20 19 25 29 54</u> •	125.0 Very 125.0 NMC	stiff, moist, brown and gray, with trace sand, /(CH, A-7-6(34)), LL=50 PL=14 PI=36 =21.2 %#200=91.9	AT 1	23.5 SS-20	6 8 11 1	3 24 3	×⊕ × ▲		De A-3 %
Very dense, wet, brown, medium to fine grained, POORLY GRADED SAND with GRAVEL (SP, A-1-6/0), LL=NP PL=NP PL=NP NMC=11.6 %#200=4.4	98.5 SS-21 19 26 31 57XA O	130.0 -135.0	dense, wet, brown, fine grained, POORLY DED SAND with SILT (SP-SM)	1	28.5 SS-2	7 20 28 4	2 70		-165.	- Me
105.0 -110.0	103.5 SS-22 18 18 18 34	Very	dense, fine to medium grained	1	33.5 SS-2	8 25 36 4	4 80		165.0 170	- Ve CL
Hard, moist, brown and gray, LEAN CLAY (CL)	108.5 SS-23 13 16 21 37	140.0 -145.0	dense, wet, brown, fine grained, POORLY DED SAND with SILT (SP-SM, A-3(0)), LL=? IV PI=NP NMC=26.2 %#200=8.7	P 1	38.5 SS-2	9 22 33 3	31 64× ▲	0	170.0	Hall
Hard, moist, brown and gray, with trace sand, LEAN 115.0 -120.0 -120.0	113.5 SS-24 14 15 19 34 X0 • X	145.0 -150.0	dense	1	43.5 SS-3	0 21 27 4	10 67		175.0	Ha
120.0 Hard	118.5 SS-25 14 17 22 39	150.0 Very	dense	1	48.5 SS-3	1 11 26 3	94 60	•	180.0	- Ve A-
LEG SAMPLER TYPE SS - Split Spoon AC - Auger Cuttings ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core	DRILLING METHOD HSA - Holiow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers RC - Rock Coring HA - Hand Auger	SS - Split Spoon ST - Shelby Tube DCP - Dynamic Co	SAMPLER TYPE AC - Auger Cuttings GB - Grab Bag ne Penetrometer NQ - Rock Core	LEGEN	HSA - Ho SSA - So HA - Han	DI Ilow Stem Aug Ild Stem Auge d Auger	RILLING ME Iers 's	THCD MR - Mud Rotary Wash RC - Rock Coring	SS - Split S ST - Shelb DCP - Dyn	Spoon by Tube namic (
	STRATA SYM	BOLS								
SAND (SP)	Image: Sandy Silt (ML) Sandy Silt (ML) Image: Sandy Silt (ML)	-SM) -S	DLOMITE AYEY GRAVEL (GC) DRLY GRADED GRAVEL SILT and SAND (GP-GM) TY CLAY (CL-ML) round Water, ATD Hr./Delayed Ground Water Iollow Stem Auger Iolid Stem Auger Jd Rotary	NO - Not NE - Not REC RQD pp - Poo SS - Spl ST - She DCP - D AC - Au GB - Gra NQ - Ro	Obtain Encour Recove Rock C ket Pen it Spoor elby Tub ynamic ger Cutt ab Bag ck Core	ed atered ary Quality Des etrometer a e Cone Pen ings	signation	ər		

1.00

Induction Induction Induction Mailong(341) 2018 Prompson Recondensity County: Mobile BW-23 Boring Location: 632+20.32 Offset: 15.51 T BW-23 Boring Location: 632+20.32 Offset: 15.51 LT Alignment [-10 Bayway No. DPI-0030(005) TE Project No. 15-1101-0228 Eng./Geo.: Chinis LaFros It Morthing: 24/9770.929 Easting: 1810248.834 Date Started: 11/18/2016 180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Date Started: 11/18/2016 180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Date Scarted: 11/18/2016 180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Z4 HR 0.0 ft. e: CME 550X Drill Method: MR Hammer Type: Automatic Energy Ratio: 88% VA Driller: Thompson Eng Groundwater: TOB	2018 25 BORINC yway LaFroscia 16 3/2016 88%
RECORD TO SUMPLY Borna Location: 632+20.32 County: Mobile 3W-23 Boring Location: 632+20.32 Offset: 15.51 LT Alignment [-10 Bayway] 40.01 TE Project No. 15-1101-0228 Eng./Geo.: Chris LaFros 5. Northing: 24970.32 Easting: 1810248.834 Date Started: 11/18/2016 180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Date Completed: 11/18/2016 180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Date Completed: 11/18/2016 ameter (in) 4-inch ASHTO / ASTM Sampling Methods: AASHTO TOE 6. T207 Energy Ratio: 88% A Driller: Thompson Eng Groundwater TOB 0.0 ft. Z H R 0.0 ft. MATERIAL DESCRIPTION Up 0 0 0 ft. 24 HR 0.0 ft. SPT NVALUE (nowsfoot) MATERIAL DESCRIPTION Up 0 0 0 ft. 90 0 ft. 91 0 20 30 40 50 60 70	yway LaFroscia 16 3/2016 88%
MOTENSING RECORDERISED Identified in the string conting is and Bayway County: Mobile W2-33 Boring Location: 632+20.32 Offset: 1.5.11 LT Alignment 1-10 Bayway 60: DP10030(005) TE Project No. 15.511 LT Alignment 1-10 Bayway Cinxi L*104028 EncylCool: Christ L*106 18:0.0 ft Solid Depth: 18:0.0 ft Core Depth: 0.0 ft Date Completed: 11/18/2016 18:0.0 ft Solid Depth: 18:0.0 ft Core Depth: 0.0 ft Date Completed: 11/18/2016 18:0.0 ft Solid Depth: 18:0.0 ft Core Depth: 0.0 ft Date Completed: 11/18/2016 18:0.0 ft Solid Depth: 18:0.0 ft Core Depth: 0.0 ft Date Completed: 11/18/2016 19:0.0 ft Solid Depth: Thompson Eng Groundwater: TOB 0.0 ft 24 HR 0.0 ft 19:0.0 ft UP integr Integration integration is integration integration integration is integration integrated integrated integrated integration integrated integration integ	yway LaFroscia 16 3/2016 88%
County: Mobile VM-23 County: Mobile ITE Project No.: 15-11 LT Alignment, I-10 Bayway OPI-0030(005) TE Project No.: 15-11 LT Alignment, I-10 Bayway Northing: 24970.929 Easting: 1810248.834 Date Started: 11/18/2016 ammeter (in): 4.4-NCH ASST TO 206 & T207 COME 550X Drill Method: MASHTO / ASTM Sampling Methods: AASHTO 7206 & T207 MATERIAL DESCRIPTION	yway LaFroscia 16 3/2016 88%
W2-32 Boring Location: 632+20.32 Offset: 15.51 L1 Alignment: Alignment: 10.10 Bayway o. DPI-0030(005) TE Project No.: 15.51 L1 Alignment: Ing./Geo.: Chris LaFros Northing: 24970.929 Easting: 1810248.834 Date Started: 11/18/2016 Bao. ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Date Completed: 11/18/2016 ameter (in): 4-inch AASHTO / ASTM Sampling Methods: AASHTO T206 & T207 Energy Ratio: 88% A Drill Method: MR Hammer Type: Automatic Energy Ratio: 88% A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 91 90 10.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 91 90 <td>yway LaFroscia 16 3/2016 88%</td>	yway LaFroscia 16 3/2016 88%
Northing: 249770.929 Easting: 1810248.834 Date Started: 11/18/2016 180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Date Completed: 11/18/2016 ameter (in): 4-inch AASHTO / ASTM Sampling Methods: AASHTO T206 & T207 Energy Ratio: 88% A Drill Method: MR Hammer Type: Automatic Energy Ratio: 88% A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: Secontext and the s	16 3/2016 88%
180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft. Date Completed: 11/28/2016 ameter (in): 4-inch AASHTO / ASTM Sampling Methods: AASHTO T206 & T207 CME 550X Drill Method: MR Hammer Type: Automatic Energy Ratio: 88% A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION 900 ft. 90 ft. 91 ft.	8/2016
Addition Addition MR Hammer Type: Addition Energy Ratio: 88% A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION Image: Second	88%
A Driller: Thompson Eng Groundwater: TOB 0.0 ft. 24 HR 0.0 ft. MATERIAL DESCRIPTION 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	t
MATERIAL DESCRIPTION 90 <th< td=""><td></td></th<>	
MATERIAL DESCRIPTION Image: Constraint of the second s	VALUE (s/foot)
Image: Second	C LL
Jense, wet, brown, fine grained, SILTY SAND (SM, brown, PL=NP PI=NP NMC=19.2 153.5 SS-32 15 17 21 38× O A Aedium dense 158.5 SS-33 6 9 12 21 A fery stiff, moist, brown and black, SANDY LEAN 163.5 SS-34 5 9 13 22 A fard, moist, brown, SANDY LEAN CLAY (CL, A-8(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1 168.5 SS-35 11 15 19 34 B X A	NTENT (%)
Dense, wet, brown, fine grained, SiLTY SAND (SM, +v2-4(0)), LL=NP PL=NP PMKC=19.2 Medium dense fery stiff, moist, brown and black, SANDY LEAN (LAY (CL)) Hard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1	0 60 70 80 90
Dense, wet, brown, fine grained, SILTY SAND (SM, 12-24(0)), LL=NP PL=NP PI=NP NMC=19.2 Medium dense fery stiff, moist, brown and black, SANDY LEAN LAY (CL) tard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1	
bense, wet, brown, fine grained, SiLTY SAND (SM, +2-4(0)), LL=NP PL=NP PI=NP NMC=19.2 ##200=31.0 fedium dense fedium dense 158.5 SS-33 6 9 12 21 fery stiff, moist, brown and black, SANDY LEAN XLAY (CL) 163.5 SS-34 5 9 13 22 fard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1 168.5 SS-35 11 15 19 34 89-× 4	
#200=31.0 Aedium dense fery stiff, moist, brown and black, SANDY LEAN 163.5 SS-33 6 9 12 21 163.5 SS-34 5 9 13 22 163.5 SS-34 5 9 13 22 163.5 SS-34 5 9 13 22 163.5 SS-35 11 15 19 34 80 X 163.5 SS-35 11 15 19 34 80 X 4	
fedium dense 158.5 SS-33 6 9 12 21 fery stiff, moist, brown and black, SANDY LEAN 163.5 SS-34 5 9 13 22 fery stiff, moist, brown and black, SANDY LEAN 163.5 SS-34 5 9 13 22 fery stiff, moist, brown, SANDY LEAN 168.5 SS-35 11 15 19 34 fery stiff, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1 168.5 SS-35 11 15 19 34	
Medium dense 158.5 SS-33 6 9 12 21 Ifery stiff, moist, brown and black, SANDY LEAN 163.5 SS-34 5 9 13 22 Ifery stiff, moist, brown and black, SANDY LEAN 163.5 SS-34 5 9 13 22 • Ifer y stiff, moist, brown, SANDY LEAN 168.5 SS-34 5 9 13 22 • Ifer y stiff, moist, brown, SANDY LEAN 168.5 SS-35 11 15 19 34 80-× •	
Aedium dense /ery stiff, moist, brown and black, SANDY LEAN CLAY (CL) tard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1 SS-35 11 15 19 34	
Aery stiff, moist, brown and black, SANDY LEAN 163.5 9 13 22 Hard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1 168.5 SS-35 11 15 19 34 89-× 4	
rery stiff, moist, brown and black, SANDY LEAN 163.5 SS-34 5 9 13 22 Hard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)). 168.5 SS-35 11 15 19 34 Hard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)). 168.5 SS-35 11 15 19 34 89	
fery stiff, moist, brown and black, SANDY LEAN 163.5 LLAY (CL) SS-34 5 9 13 22 Hard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1 168.5 SS-35 11 15 19 34 89-× 4	
Lard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)).	
Hard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)). L=28 PL=15 PI=13 NMC=15.5 %#200=62.1	
lard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), L=28 PL=15 PI=13 NMC=15.5 %#200=62.1	
tard, moist, brown, SANDY LEAN CLAY (CL, A-6(5)), 168.5 L=28 PL=15 PI=13 NMC=15.5 %#200=62.1 SS-35 11 15 19 34	
L=20 FL=13 PF=13 NM(L=10.3 76/F2U=62.1	
1735	
Hard SS-36 12 15 17 32	
-	
Very stiff melet brown SANDY I FAN CLAY (CL	
4-6(3)), LL=33 PL=13 PL=13 PL=20 NMC=18.2 %#200=59.4 SS-37 10 12 15 27 ★0.000	
LEGEND	
SAMPLER TYPE DRILLING METHOD	
nn AC - Auger Cuttings HSA - Hollow Stem Augers MR - Mud Rotary Wa be GB - Grab Bag SSA - Solid Stem Augers RC - Rock Coring	totary Wash Coring
Cone Penetrometer NQ - Rock Core HA - Hand Auger	

thompson	RECORD	OF TEST BORING	thompson		RECORD OF TEST BORI	NG t
Site Description: I-10 Mobile River Bridge and Bayway Boring No.: BW-23 Boring Location: 632+20.32 ALDOT PE No.: DPI-0030(005) TE Project No Elev.: -4.0 ft. Northing: 249770.929 Easting: Total Depth: 180.0 ft. Soil Depth: 180.0 ft. Corr Bore Hole Diameter (in): 4-inch AASHTO / ASTM Sar Drill Method: MR Ha	Cd Cd Coffset: 15.51 LT Alig 15-1101-0228 En 1300 L Date State 1100 Date Cd 1100 Date Cd	Dunty: Mobile Image: Construction of the sympole Image: Construction of the sympole <th< th=""><th>Site Description: 1-10 Mobile River Bridge and B Boring No.: BW-110 Boring Location: 85 ALDOT PE No.: DPI-0030(005) TE Pro Elev.: 1-1.5 ft. Northing: 238883.4863 I Total Depth: 120.0 ft. Soil Depth: 120.0 ft. ASHTO / AS Drill Machine: CME 45C Drill Method: MR</th><th>ayway 4+44.18 Offset: 19.2 ject No.; 15-1101-0228 asting: 1833753.01 Core Depth: 0.0 ft. TM Sampling Methods Hammer Type: M</th><th>County: Mobile 23 RT Alignment: I-10 Bayway Eng./Geo.: Justin Fancher Date Started: 12/14/2015 Date Completed: 12/15/2015 AASHTO T206 & T207 Ianual Energy Ratio: B6%</th><th>Site Descri Boring No.: ALDOT PE Elev.: -1.5 Total Depth Bore Hole I Drill Machin</th></th<>	Site Description: 1-10 Mobile River Bridge and B Boring No.: BW-110 Boring Location: 85 ALDOT PE No.: DPI-0030(005) TE Pro Elev.: 1-1.5 ft. Northing: 238883.4863 I Total Depth: 120.0 ft. Soil Depth: 120.0 ft. ASHTO / AS Drill Machine: CME 45C Drill Method: MR	ayway 4+44.18 Offset: 19.2 ject No.; 15-1101-0228 asting: 1833753.01 Core Depth: 0.0 ft. TM Sampling Methods Hammer Type: M	County: Mobile 23 RT Alignment: I-10 Bayway Eng./Geo.: Justin Fancher Date Started: 12/14/2015 Date Completed: 12/15/2015 AASHTO T206 & T207 Ianual Energy Ratio: B6%	Site Descri Boring No.: ALDOT PE Elev.: -1.5 Total Depth Bore Hole I Drill Machin
Green Size N/A Driller: Thompson Eng Gr Size Size Material Description Size Size	Craphic Craphic (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)			Graphic Cog (ft.) Sample Depth (ft.) No./Type	Spin 0.0 ft 24 HK 0.0 ft 10 50 ft 0.0 ft 0.0 ft 10 20 ft MC LL 10 20 ft 0.0 ft 0.0 ft	tit (g) (g) 30.0
Boring Terminated at 180.0 feet.			Very soft, wel, dark gray, LEAN CLAY with SAU (CL) Very soft 5.0 Very soft Very soft Very soft, wel, dark gray, LEAN CLAY with SAU A-7-6(16)), LL=49 PL=26 PI=23 NMC=26.5 %#200=72.3 Very soft, No Recovery -10.0 Very soft	4D 0.0 SS-1 1.5 SS-2 3.0 SS-3 4D (CL, 4.5 SS-4 6.0 SS-5 8.5 SS-6 SS-6	0 0 0 0 0 0 0 0 0	
			-15.0 Very loose, wet, gray, fine grained, POORLY GRADED SAND (SP) -20.0 Very loose, wet, gray, fine to medium grained,	13.5 SS.7 SILTY 18.5 SS.4		45.0
			25.0 SAND (SM) 25.0 Very loose, wet, gray, fine to medium grained, - SAND (SM, A-4(0)), LL=NP PL=NP PI=NP NM %#200=39.1	SILTY C=27.9	0 0 0 0 m	50.0
				28.5 SS-10	0 0 0	60.0
LE SAMPLER TYPE SS - Split Spoon AC - Auger Cuttings ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core	EGEND DRILLING HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger	METHOD MR - Mud Rotary Wash RC - Rock Coring	SAMPLER TYPE SS - Split Spoon AC - Auger Cuttings ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core	HSA - Holk SSA - Solic HA - Hand	DRILLING METHOD ow Stem Augers MR - Mud Rotary Wash d Stem Augers RC - Rock Coring Auger	SS - Split Spr ST - Shelby 1 DCP - Dynam
SAND (SI SILT (MH FAT CLA SILTY SA SILTY SA POORLY with SILT ORGANIA	P) S A) S Y (CH) S AND (SM) S Y GRADED SAND C T (SP-SM) S IC SOILS (OL) S S S S S S S S S S S S S S	STRATA SYMB ANDY SILT (ML) EAN CLAY (CL) OPSOIL LAYEY SAND (SC) CLAYEY SILTY SAND (SC-SI VELL GRADED SAND with ILT and GRAVEL (SW-SM)	BOLS DOLOMITE DOLOMITE CLAYEY GRAVEL (GC) POORLY GRADED GRAVEL with SILT and SAND (GP-GM) SILTY CLAY (CL-ML) SM) Cround Water, ATD 24 Hr./Delayed Ground Water HSA - Hollow Stem Auger	NO - Not Obtained NE - Not Encount <u>REC</u> Recover RQD Rock Qu pp - Pocket Pene SS - Split Spoon ST - Shelby Tube DCP - Dynamic C AC - Auger Cuttin GB - Grab Bag	d tered ry uality Designation etrometer Sone Penetrometer ngs	

NOMPSON ENGINEERING tion: I-10 Mobile River Bridge and BW-110 Boring Location: 8 to. DPI-0030(005) TE Pr 1. Northing: 238883.4863 120.0 ft. Soil Depth: 120.0 ft. iameter (in): 4-inch AASHTO / A e: CME 45C Drill Method: MR I/A Driller: Thompson MATERIAL DESCRIPTION MATERIAL DESCRIPTION Very loose, wet, gray, fine to medium grained POORLY GRADED SAND with SILT (SP-SM A-2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 %#200=11.7	Bayway 394+44.18 roject No Easting: Corr STM Sar Ha Eng Gr	3 Offi 15- 5 Dep puldebo puldebo	fset: 1101 18333 pth: (0 g Me er Typ dwate (1)	19.2 -0228 753.01 0.0 ft. thods pe: M eddfrow solutions addrow solutions a	A anua B 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EC Daa Daa Daa Daa Daa Daa Daa Daa Daa Da	ORI Cc Alig Er tte Sta ate Co O T20	DOF Dunty: ment: mg./Geo.: rted: 12 mpleted: 6 & T207 Energy 24 HR	TEST Mobile -10 Bayy Justin I /14/2015 : 12/15/2 Ratio: 0.0 ft. SPT N V/ (blows/f	BOR vay Fanche 2015 86%	26
A Compson Evenue Monterning 1-10 Mobile River Bridge and 3W-110 Boring Location: 8 0. DPI-0030(005) TE Pr Northing: 238883.4683 120.0 ft. Soil Depth: 120.0 ft. ameter (in): 4-inch AASHTO / A CME 45C Drill Method: MR A Driller: Thompson MATERIAL DESCRIPTION MATERIAL DESCRIPTION (erv loose, wet, gray, fine to medium grained V-24(0), LL=NP PL=NP PI=NP NMC=27.3 6#200=11.7	Bayway 394+44.18 roject No Easting: Corr ASTM Sar Ha Eng Gr	Offi 15- 15- 10-	samble Debth 1101 18333 pth: ((1;) dwate	19.2 -0228 753.01 0.0 ft. thods pe: M er: TC	A anua B 0 15	Daa Daa Daa ASHT al 0.0 ft.	ORI Co Alig Er te Sta ate Co O T20	DOF Dunty: Inment: I ng./Geo rted: 12 mpleted: 6 & T207 Energy 24 HR	Mobile -10 Bayy Justin I /14/2015 12/15/2 Ratio: 0.0 ft. SPT N V. (blows/f	BOR vay anche 2015 86%	ING
OMD S ON ENGINEERING ion: 1-10 Mobile River Bridge and W-110 Boring Location: 8 0. DPI-0030(005) TE Pr Northing: 238883.4863 120.0 ft. Soil Depth: 120.0 ft. ameter (in) 4-inch AASHTO / A CME 45C Drill Method: MR A Driller: Thompson MATERIAL DESCRIPTION MATERIAL DESCRIPTION eryloose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM -2-4(0), LL=NP PL=NP PL=NP NMC=27.3 #200=11.7	Bayway 394+44.18 roject No Easting: Corr SSTM Sar Ha Eng Gr	Off O	fset: 1101 18333 pth: (1 18333 Dth: (18333 Dth: (183333 Dth: (183333 Dth: (183333 D	19.2 -0228 753.01 0.0 ft. thods pe: M er: TC	Av anua B 0	Da Da Da ASHT al	ORI Co Alig Er te Sta ate Co O T20	DOF ounty: inment: ing./Geo rted: i2 mpleted: 6 & T207 Energy 24 HR	TEST Mobile -10 Bayy Justin I /14/2015 12/15/2 Ratio: 0.0 ft. SPT N V/ (blows/ft)	BOR vay Fanche 2015 86%	
ion: I-10 Mobile River Bridge and W-110 Boring Location: 8 b. DPI-0030(005) TE Pr Northing: 238883.4863 120.0 ft. Soil Depth: 120.0 ft. Interer (in): 4-inch AASHTO / A CME 45C Drill Method: MR A Driller: Thompson MATERIAL DESCRIPTION MATERIAL DESCRIPTION ery loose, wet, gray, fine to medium grained ORLY GRADED SAND with SILT (SP-SM -2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7	Bayway 394+44.18 roject No Easting: Corr ASTM Sar Ha Eng Gr	ounce	fset: -1101 18337 pth: (g Me er Ty dwate theor Ty (',')	19.2 -0228 753.01 0.0 ft. thods pe: M er: TC eddurson	A/anua BB 0	Da Da ASHT al	Alig Er te Sta ate Co O T20	nment: I ng./Geo rted: 12 mpleted: 6 & T207 Energy 24 HR	Mobile -10 Bayw Justin I /14/2015 12/15/2 Ratio: 0.0 ft. SPT N V/ (blows/ft)	vay Fanche 2015 86%	
W-110 Boring Location: 8 DPI-0030(005) TE Pr Northing: 238883.4863 120.0 ft. Soil Depth: 120.0 ft. Immeter (in): 4-inch AASHTO / A CME 45C Drill Method: MR A Driller: Thompson MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION MATERIAL DESCRIPTION BOORLY GRADED SAND with SILT (SP-SM 2-4(0), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7	Astronomic and a second	B Office Population	sample Debth (ft) dwate (ft) dwate	19.2 -0228 753.01 0.0 ft. thods pe: M er: TC	A/ anua B 0	Da Da ASHT al 0.0 ft.	Alig Er te Sta ate Co O T20	nment: ng./Geo.: rted: 12 mpleted: 6 & T207 Energy 24 HR	-10 Bayw Justin I /14/2015 12/15/2 Ratio: 0.0 ft. SPT N V/ (blows/f	vay Fanche 2015 86%	
Northing: 238883.4863 120.0 ft. Soil Depth: 120.0 ft. Imeter (in): 4-inch AASHTO / A CME 45C Drill Method: MR A Driller: Thompson MATERIAL DESCRIPTION MATERIAL DESCRIPTION ery loose, wet, gray, fine to medium grained OCRLY GRADED SAND with SILT (SP-SM 2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	Easting: Cond ASTM Sar Ha Eng Gr	e Dep nplin mme ounc	sample Depth: (ag Me er Tyr dwate util (ft)	v53.01 0.0 ft. thods pe: M eddition eddition eddition	B 0	Da Da ASHT al 0.0 ft.	ate Con O T20	rted: 12 mpleted: 6 & T207 Energy 24 HR	/14/2015 12/15/2 Ratio: 0.0 ft. SPT N V/ (blows/f	2015 86%	
120.0 ft. Soil Depth: 120.0 ft. Imeter (in): 4-inch AASHTO / A CME 45C Drill Method: MR A Driller: Thompson MATERIAL DESCRIPTION ery loose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM -2-4(0), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7 DOSE	Conv ASTM Sar Ha Eng Gr		Sample Depth (ft.) (ft.) (ft.)	Sample Sample No./Type Sample	anua B 0	Da ASHT al 0.0 ft.	O T20	Energy 24 HR	Ratio: 0.0 ft. 0.0 spt N V/ (blows/f	86% ALUE	
CME 45C Drill Method: MR A Driller: Thompson MATERIAL DESCRIPTION ery loose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM 2-4(0), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7	Ha Eng Gr	raphic Cog	Sample Depth (ft.) (ft.)	Sample No./Type	1st 6"	al .0 ft.	/alue	Energy 24 HR	Ratio: 0.0 ft. SPT N V/ (blows/f	86%	_
A Driller: Thompson MATERIAL DESCRIPTION ery loose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM 2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7	Eng Gr	Log Log	Sample Depth (ft.)	Sample No./Type	1st 6" B	.0 ft.	/alue	24 HR	0.0 ft. SPT N V/ (blows/f	ALUE	
MATERIAL DESCRIPTION ery loose, wel, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM -2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7	4	Log	Sample Depth (ft.)	Sample No./Type	1st 6"	2nd 6"	/alue	DI	(blows/f	oot)	
MATERIAL DESCRIPTION ery loose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM -2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7 pose		Log	Sample (ft.) (ft.)	Samp No./Ty	1st 6	end 6	/alt	DI			
ery loose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM -2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7 0056	0		-				NN	¥ ▲ Fil	MC O NES CONT	ENT (%)	
ery loose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM -2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							10 20 3	30 40 50	60 70 8	0 90
ery loose, wet, gray, fine to medium grained OORLY GRADED SAND with SILT (SP-SM -2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7			-					0.00			
OORLY GRADED SAND with SILT (SP-SM -2-4(0)), LL=NP PL=NP PI=NP NMC=27.3 #200=11.7			33.5	_	-		-				
#200=11.7 xxxxe	E		-	SS-11	1	1	1 23	• • •			- 11
bose	14. C.		-								
xxxe											
	15.1.1		38.5	SS-12	2	3	2 5	•			
	2007		-					100		0 U.U.	-
	Contraction of the		-								
oose, light gray	10.11		43.5	00.45							
	0.000	1	-	55-13	4	4	3 9	-		-	-
	1000		-								
			48.5								
edium dense	The second		40.0	SS-14	7	9	13 22				1
	the second		-								7
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										
Medium dense, wet, light gray, fine to medium grained. POORLY GRADED SAND with SILT			53.5	SS-15	10	11 1	10 21)				
SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC 5#200=5.9	=20.9		-		-	-	-				
	too too		-								
oose	and the second se		58.5	-			-				
	10.00			SS-16	5	4	4 8	•		2.0	1
	LE	GEN	D								
SAMPLER TYPE			He	A - Holle	w Ste	DI Aus	RILLING	METHOD	- Mud Ret	ary Week	
De GB - Grab Bag Cone Penetrometer NQ - Rock Core			SS. HA	A - Solid	Stem	Auge	rs	RC	- Rock Co	ring	
		-			-						

	REFERENCE PROJECT NO	FISCAL	SHEET
	IM-I010(341)	2018	13
SECTION			
>			
2'-0 ³ /4''			
SPUN CAST CYLINDER PILE GENERAL	NOTES		
FOR EACH SPUN CAST CYLINDER PILE SECTION MPRESSIVE STRENGTH OF THE CONCRETE HAS	N SHALL NOT BE REMU REACHED A MINIMUM	OVED OF	
IN THE SPUN CAST CYLINDER CONCRETE PILE VE STRENGTH OF 7,000 PSI PRIOR TO BEING A R CONCRETE PILE UNIT AND RECEIVING THE P	E SECTIONS SHALL HA SSEMBLED INTO A SP RESTRESSING FORCE,	VE	
(LINDER CONCRETE PILES SHALL NOT BE SHIPF 28-DAY COMPRESSIVE STRENGTH OF THE CONC	PED AND DRIVEN UNTI RETE IS 10,000 PSI.	IL.	
HAVE A MINIMUM COMPRESSIVE STRENGTH OF TRANDS, REFER TO ALDOT-451 FOR GROUT TES	4,000 PSI PRIOR TO TING.		
JOINING SURFACES OF EACH SECTION SHALL G MATERIAL AND THE SPUN CAST CYLINDER CO S DIRECTED IN ALDOT-451.	BE COVERED BY A DNCRETE PILES STRES	SSED	
T CYLINDER CONCRETE PILES SHALL HAVE CAE DNS ON THIS SHEET, EACH CABLE IS COMPOSED ION STRANDS CONFORMING TO AASHTO M 203. AN INITAL TENSION OF 30,900 LBS IN THE SH	BLES PLACED AS SHO OF 2-1/2" Ø, 270 KS THE STRANDS SHALL EQUENCE DESCRIBED 1	WN I BE IN	
PACER REINFORCING SHALL BE WII COLD DRAWN SIGNATION M 32. THE SPIRAL REINFORCING ST TUDINAL WIRE.	N STEEL WIRE CONFOR	RMING TO	
) 2"Ø VENT HOLE (@ € PILE) ON TWO(2) OPP H PILE SECTION.	OSITE FACES OF PIL	ES	
NOT TO SCALE SPIN	CYLINDER CONCRE	ROU	ITE
PILE	DETAILS	I-1	0

Appendix F

Instrument Calibrations TP-23B

I-10 over Mobile River Bridge Load Test Program ALDOT Project No.: IM-I010(341)

DOT Project No.: IM-I010(341) Mobile County, Alabama AFT Project No.: 118008

Certificate of Calibration

Transducer Model: BDI ST350

Serial Number: E655 PDI Gage Factor: 92.7 με/V

General Gage Factor: 321.8 $\mu\epsilon/mV/V_{ext}$ Initial Offset Voltage: 0.149 mV/V_{ext}

Applied Strain (µE)	Transducer Output (mV/Vext)	Applied Strain (µɛ)	Transducer Output (mV/Vest)
-132	0.253	133	1.110
-286	-0.238	423	2.009
-565	-1.103	726	2.949
-808	-1.866	1035 .	3.901
-1075	-2.707	1349	4.878
-1324	-3.476	1671	5.850
-1558	-4.208	1915	6.567
-1790	-4.911	1868	6.416
-1856	-5.099	1549	5.441
-1741	-4.789	1226	4.447
-1486	-3.993	912	3.460
-1209	-3.125	599	2.486
-935	-2.243	301	1.568
-662	-1.365	9	0.670
-390	-0.510	-131	0.244
-125	0.319	-132	0.240

Calibration Curve

Transducer Output (mV/V)

Mean Linear Correlation Coefficient (LCC): 9.999728E-1

Calibrated By: Kay Tol

Date/Time: 2/28/2018 8:04 AM

LCC Standard Deviation: 2.690308E-6 Signature: Kay J.R

Temperature (°C): 25.3

Specifications PDI Automated Strain Transducer Calibration System (PDI-ASTCS)

ASTCS Calibration Information				
ASTCS Serial Number:	ASTCS-0005			
ASTCS Software Version:	2.310			
ASTCS Independent Verification Date:	11/5/2014 11:54 AM			
Strain Transducer Gage Length:	3.0 inches (76.2 mm)			
Applied Full Scale Displacement Range:	±7.500000E-3 inches			
Method for Applying Displacement:	Precision Step Motor Coupled to Linear Stage			
Excitation Voltage for Calibration:	2.5 VDC			
Displacement Measurements:	Dual Precision AC LVDT's, Output Averaged			
Displacement Certification:	NIST 274437-07			
Linearity Verification Technique:	Linear Correlation Coefficient > 0.9999			
Repeatability Verification Technique:	Standard Deviation < 0.5 % (of mean)			
ASTC	CS System Check			
Reference Strain Transducer:	4367T			
Reference General Gage Factor:	293.000 με/mV/V			
LVDT #1 Sensitivity (inches/volt):	7.916500E-3			
LVDT #2 Sensitivity (inches/volt):	8.042000E-3			
Date/Time of Last System Check:	2/27/2018 3:17 PM			
PDI Strain T	ransducer Connections			
Black:	+ Excitation			
Green:	- Excitation			
Red:	+ Signal			
White:	- Signal			
Grey:/BARE	Shield			

NIST Reference:

PDI certifies the above PDI-ASTCS instrument meets or exceeds published specifications and has been verified using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology (NIST), an accepted value of a natural physical constant or a ratio calibration technique. The calibration of this instrument was performed in accordance with the PDI Quality Assurance program. Measurements and information provided on this report are valid at the time of calibration only.

Certificate of Calibration

Transducer Model: BDI ST350

Serial Number: J762 PDI Gage Factor: 93.9 με/V

General Gage Factor: 326.1 $\mu\epsilon/mV/V_{ext}$ Initial Offset Voltage: -0.006 mV/V_{ext}

Applied Strain (µɛ)	Transducer Output (mV/Vext)	Applied Strain (µɛ)	Transducer Output (mV/Vext)
-95	-0.099	158	0.710
-244	-0.569	430	1.538
-507	-1.370	723	2,430
765	-2.165	1021	3.335
-1036	-3.005	1327	4.269
-1302	-3.817	1642	5.216
1546	-4.563	1883	5.918
1769	-5.256	1841	5.789
1829	-5.427	1531	4.856
1714	-5.105	1218	3.908
1455	-4.308	914	2.976
-1190	-3.475	616	2.064
-920	-2.631	332	1.201
-648	-1.772	47	0.328
-369	-0.905	-95	-0.086
-94	-0.057	-93	-0.090

Calibration Curve

Transducer Output (mV/V)

Mean Linear Correlation Coefficient (LCC): 9.999784E-1

Calibrated By: Kay Tol

Date/Time: 2/28/2018 8:02 AM

LCC Standard Deviation: 1.747861E-6 Signature: Kay Jul

Temperature (°C): 25.3

Specifications PDI Automated Strain Transducer Calibration System (PDI-ASTCS)

ASTCS Calibration Information				
ASTCS Serial Number:	ASTCS-0005			
ASTCS Software Version:	2.310			
ASTCS Independent Verification Date:	11/5/2014 11:54 AM			
Strain Transducer Gage Length:	3.0 inches (76.2 mm)			
Applied Full Scale Displacement Range:	±7.500000E-3 inches			
Method for Applying Displacement:	Precision Step Motor Coupled to Linear Stage			
Excitation Voltage for Calibration:	2.5 VDC			
Displacement Measurements:	Dual Precision AC LVDT's, Output Averaged			
Displacement Certification:	NIST 274437-07			
Linearity Verification Technique:	Linear Correlation Coefficient > 0.9999			
Repeatability Verification Technique:	Standard Deviation < 0.5 % (of mean)			
ASTC	CS System Check			
Reference Strain Transducer:	4367T			
Reference General Gage Factor:	293.000 με/mV/V			
LVDT #1 Sensitivity (inches/volt):	7.916500E-3			
LVDT #2 Sensitivity (inches/volt):	8.042000E-3			
Date/Time of Last System Check:	2/27/2018 3:17 PM			
PDI Strain T	ransducer Connections			
Black:	+ Excitation			
Green:	- Excitation			
Red:	+ Signal			
White:	- Signal			
Grey:/BARE	Shield			

NIST Reference:

PDI certifies the above PDI-ASTCS instrument meets or exceeds published specifications and has been verified using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology (NIST), an accepted value of a natural physical constant or a ratio calibration technique. The calibration of this instrument was performed in accordance with the PDI Quality Assurance program. Measurements and information provided on this report are valid at the time of calibration only.

Certificate of Calibration

Transducer Model: BDI ST350

Serial Number: P454 PDI Gage Factor: 145.3 με/V

General Gage Factor: 504.7 $\mu\epsilon/mV/V_{ext}$ Initial Offset Voltage: -0.113 mV/V_{ext}

Applied Strain (µE)	Transducer Output (mV/Vext)	Applied Strain (µE)	Transducer Output (mV/Vext)	
65	-0.330	335	0.184	
-83	-0.628	598	0.709	
-331	-1.125	889	1.284	
-607	-1.670	1188	1.872	
-876	-2.202	1497	2.487	
-1115	-2.687	1814	3.109	
-1344	-3.136	2058	3.573	
-1543	-3.541	2013	3.492	
-1597	-3.646	1700	2.888	
-1525	-3.515	1387	2.272	
-1288	-3.058	1088	1.683	
-1023	-2.521	794	1.100	
-753	-1.982	502	0.529	
-483	-1.439	210	-0.047	
-210	-0.893	71	-0.319	
70	-0.337	70	-0.321	

Calibration Curve

Mean Linear Correlation Coefficient (LCC): 9.999805E-1

Calibrated By: Vanna Thach

Date/Time: 1/26/2018 8:12 AM

LCC Standard Deviation: 1.224288E-6

hack Signature: C

Temperature (°C): 24.3

Specifications

PDI Automated Strain Transducer Calibration System (PDI-ASTCS)

ASTCS Ca	libration Information		
ASTCS Serial Number:	ASTCS-0005		
ASTCS Software Version:	2.310		
ASTCS Independent Verification Date:	11/5/2014 11:54 AM		
Strain Transducer Gage Length:	3.0 inches (76.2 mm)		
Applied Full Scale Displacement Range:	±7.500000E-3 inches		
Method for Applying Displacement:	Precision Step Motor Coupled to Linear Stage		
Excitation Voltage for Calibration:	2.5 VDC		
Displacement Measurements:	Dual Precision AC LVDT's, Output Averaged		
Displacement Certification:	NIST 274437-07		
Linearity Verification Technique: Linear Correlation Coefficient > 0.9999			
Repeatability Verification Technique: Standard Deviation < 0.5 % (of mean)			
ASTO	CS System Check		
Reference Strain Transducer:	4367T		
Reference General Gage Factor:	293.000 με/mV/V		
LVDT #1 Sensitivity (inches/volt):	7.916500E-3		
LVDT #2 Sensitivity (inches/volt): 8.042000E-3			
Date/Time of Last System Check:	1/26/2018 7:12 AM		
PDI Strain T	Fransducer Connections		
Black:	+ Excitation		
Green:	- Excitation		
Red:	+ Signal		
White:	- Signal		
Grey:/BARE	Shield		

NIST Reference:

PDI certifies the above PDI-ASTCS instrument meets or exceeds published specifications and has been verified using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology (NIST), an accepted value of a natural physical constant or a ratio calibration technique. The calibration of this instrument was performed in accordance with the PDI Quality Assurance program. Measurements and information provided on this report are valid at the time of calibration only.

Certificate of Calibration

Transducer Model: BDI ST350

Serial Number: P455 PDI Gage Factor: 145.8 με/V

General Gage Factor: 506.2 $\mu\epsilon/mV/V_{ext}$ Initial Offset Voltage: -0.434 mV/V_{ext}

.

Applied Strain (µE)	Transducer Output (mV/Vext)	Applied Strain (µɛ)	Transducer Output (mV/Vext)	
110	-1.082	389	-0.551	
-42	-1.386	657	-0.021	
-288	-1.881	947	0.552	
-560	-2.418	1246	1.143	
-828	-2.945	1556	1.751	
-1070	-3.431	1869	2.371	
-1290	-3.866	2115	2.834	
-1489	-4.264	2069	2.749	
-1547	-4.375	1752	2.143	
-1473	-4.243	1446	1.542	
-1238	-3.788	1147	0.958	
-976	-3.260	845	0.360	
-707	-2.726	548	-0.218	
-440	-2.191	255	-0.796	
-163	-1.641	114	-1.075	
118	-1.086	114	-1.076	

Calibration Curve

Transducer Output (mV/V)

Mean Linear Correlation Coefficient (LCC): 9.999817E-1

Calibrated By: Vanna Thach

Date/Time: 1/26/2018 7:26 AM

LCC Standard Deviation: 3.891526E-7

Signature: Much

Temperature (°C): 23.6

Specifications

PDI Automated Strain Transducer Calibration System (PDI-ASTCS)

ASTCS Ca	libration Information		
ASTCS Serial Number:	ASTCS-0005		
ASTCS Software Version:	2.310		
ASTCS Independent Verification Date:	11/5/2014 11:54 AM		
Strain Transducer Gage Length:	3.0 inches (76.2 mm)		
Applied Full Scale Displacement Range:	±7.500000E-3 inches		
Method for Applying Displacement:	Precision Step Motor Coupled to Linear Stage		
Excitation Voltage for Calibration:	2.5 VDC		
Displacement Measurements:	Dual Precision AC LVDT's, Output Averaged		
Displacement Certification:	NIST 274437-07		
Linearity Verification Technique: Linear Correlation Coefficient > 0.9999			
Repeatability Verification Technique: Standard Deviation < 0.5 % (of mean)			
ASTO	CS System Check		
Reference Strain Transducer:	4367T		
Reference General Gage Factor:	293.000 με/mV/V		
LVDT #1 Sensitivity (inches/volt):	7.916500E-3		
LVDT #2 Sensitivity (inches/volt): 8.042000E-3			
Date/Time of Last System Check:	1/26/2018 7:12 AM		
PDI Strain T	Fransducer Connections		
Black:	+ Excitation		
Green:	- Excitation		
Red:	+ Signal		
White:	- Signal		
Grey:/BARE	Shield		

NIST Reference:

PDI certifies the above PDI-ASTCS instrument meets or exceeds published specifications and has been verified using standards and instruments whose accuracies are traceable to the National Institute of Standards and Technology (NIST), an accepted value of a natural physical constant or a ratio calibration technique. The calibration of this instrument was performed in accordance with the PDI Quality Assurance program. Measurements and information provided on this report are valid at the time of calibration only.

Smart Sensor

Smart Chip Programmed By X. M. W. on Thung 16 CRC Value 3435

6

Smart Sensor

Smart Chip Programmed By A. M. N. on 23 AVS17 CRC Value BADD

Applied Foundation Testing, Inc.

4035 J. Louis Street Green Cove Springs, Fl 32043 P: (904) 284-1337 F: (904) 284-1339

Force Transducer Calibration Report

19MN Kelk Load Cell

C3929-1

15

kip

Calibrating Equipment				
ltem	Description	Serial		
Pressure Gauge	20000 PSIG	1659929		
Load Reference	40MN	C027-12		
Data Acquisition	NI 9219	1A4225C		

4300

Description

Serial Number

Model

Range

Load Cycle 1		Load Cycle 2			Average	
Load Reference (kip)	Found As (mV/V)	Left As (mV/V)	Load Reference (kip)	Found As (mV/V)	Left As (mV/V)	Nonlinearity (%)
0.0	0.0751	0.0751	0.0	0.0750	0.0750	0.78%
1070.0	0.5013	0.5013	1070.0	0.5035	0.5035	0.38%
2150.0	0.9404	0.9404	2150.0	0.9448	0.9448	0.48%
3230.0	1.3800	1.3800	3230.0	1.3900	1.3900	0.71%
4300.0	1.8100	1.8100	4300.0	1.8200	1.8200	0.46%
3230.0	1.3700	1.3700	3230.0	1.3700	1.3700	-0.15%
2150.0	0.9045	0.9045	2150.0	0.9029	0.9029	-1.75%
1070.0	0.4655	0.4655	1070.0	0.4658	0.4658	-1.72%
0.0	0.0750	0.0750	0.0	0.0756	0.0756	0.80%

Comments:

Linear Gage Factor 2463.2948 kip/mV/V **Regression Zero** -151.1177 kip -1.75% **Maximum Nonlinearity** Sensitivity 1.7456 mV/V

Applied Foundation Testing, Inc. hereby certifies that this instrument meets or exceeds all requirements for its intended use and the reported calibration factors are accurate to within the limits of the calibrating procedure. Reference standards and calibrations are traceable to the National Institute of Standards and Technology (NIST) where applicable.

Technician:

Approved:

Model Number: 3701G2FA50G		701G2FA50G			
Serial Numbe	er:	3795			
Description:	DC Acc	elerometer			
Manufacturer:		РСВ	Method: Back-to-Back Comparison AT401-12		
San	sitivity @ 100 Hz	Calibration	n Data		UDC
Sens	sitivity @ 100 Hz	59.9 mV/g	Besonant	$\frac{1}{2} \operatorname{Brequency} = 1.5$	mVDC
		(0.10 m v/m/s-)	Resonant	Frequency 1.3	9 KHZ
		Cancitivi	ty Plat		
3.0-	Temperature: 72 °F (22 °C)	Relative H	umidity: 41 %	
2.0-					
1.0-					
iB 0.0-				*	
-1.0-					
-2.0-					
-3.0-					
0.5 Hz	1.0	10.0		100.0	450.0
		Data Pa	oints		
Frequency (I	Hz) Dev. (%)	Frequency (Hz)	Dev. (%)	Frequency (Hz)	Dev. (%
0.5	-0.3	10	0.1	70	0.1
1	-0.6	15	0.1	REF. FREQ.	0.0
2	0.0	20	0.0	200	0.5
5	0.0	30	0.1	450	3.9
7	0.0	50	0.1		
		and Place Official Marial			
Acceleration Level (pk)	Fation Fixture Wisincone Grease Fastene ¹ : 1.00 g (9.81 m/s ²) I may be limited by shaker displacement a	t low frequencies. If the listed level cannot be obtain	ned, the calibration system uses the followin	g formula to set the vibration amplitude; Accele	eration Level
(g) = 0.207 x (freq) ² .	The gravitational constant used for calculati	ions by the calibration system is: $1g = 9.80665 \text{ m/s}^2$.	of Unit		
As Found:	In Tolerance	Condition	oj Unu		
As Left:	In Tolerance				
		Note	25		
1. Calibratio	on is traceable to one of	r more of the following; PT	B 10065, PTB 10066 an	d NIST 683/283498.	
3. Calibratio	on is performed in com	pliance with ISO 10012-1, A	ANSI Z540.3 and ISO 1	7025.	
4. See Manu	facturer's Specificatio	n Sheet for a detailed listing	of performance specifi	cations.	
5. Due to sta	te of art limitations, th	ne test uncertainty ratio is 3:	1. Measurement uncert	ainty (95% confidence lev	el with
30.01-199 H	tor of 2) for frequency $tz: \pm -1.5\%$, 200-1 kl	Iz: +/- 3.0%.	ation are as follows: 0.5	-0.99 Hz; +/- 1.8%, 1-30	HZ; +/- 1.0%,
Technician:		Ronald Stevens (4270)) Da	te: 1/25/201	8
	·				
			NTDANICC		
Model Number:	3701G2FA50G				
--	--	--	---		
Serial Number:	3795				
Description:	DC Accelerometer				
Manufacturer:	РСВ	Method: Back-to-I	Back Comparison AT401-12		
Sensitiv	Ca vity @ 100 Hz 59.9 mV/g	libration Data (6.10 mV) Phase Plot	/m/s²)		
120.0-		1 nuse 1 101			
100.0-					
50.0-					
Degrees					
0.0-			*		
-50.0-					
-100.0-					
-120.0- -120.0-	1.0	10.0	100.0 450.0		
ΠZ					
		Data Points			
Frequency (Hz)	Phase (°)	Frequency (H	Iz) Phase (°)		
0.5	-0.6	30	-1.3		
1	-0.2	50	-2.0		
2	0.2	70	2.0		
2	-0.2	70	-2.8		
5	-0.3	REF. FREQ	-4.0		
7	-0.3	200	-73		
		200	10		
10	-0.5	450	-16.4		
15	-0.7				
20	-0.9				
		Notes			
 Calibration is This certificat Calibration is See Manufact Measurement are as follows: (traceable to one or more of the follo the shall not be reproduced, except in performed in compliance with ISO I urer's Specification Sheet for a detail uncertainty (95% confidence level w 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/-	wing; PTB 10065, PTB 10066 and N full, without written approval from PO 10012-1, ANSI Z540.3 and ISO 17025 led listing of performance specification vith coverage factor of 2) for frequence 1.0%, 30.01-199 Hz; +/- 1.5%, 200-	IST 683/283498. CB Piezotronics, Inc. 5. ons. cy ranges tested during calibration 1 kHz; +/- 3.0%.		
Technician:	Ronald Stevens	4270 Date:	1/25/2018		
	[®] PCB	VIBRATION DIVISION			
	 Intervented and a state of the second se				

odel Numbe	er:3	701G2FA50G			
Serial Number: 7984		7984			
escription:	DC Acc	elerometer			
anufacturer:		РСВ	Method: Back	k-to-Back Comparison	AT401-12
		Calibra	tion Data		
Sens	itivity @ 100 Hz	60.9 mV/g	Offset Volt	age (@ 0 g) 3.3	mVDC
		(6.21 mV/m/s ²)	Resonan	t Frequency 1.5	53 kHz
		Sensi	ivity Plot		
3.0-	Temperature: 71 °F	(22 °C)	Relative	Humidity: 42 %	1
2.0-					
1.0-					
.0.0-				×	
-1.0-					
-2.0-					
0.5	1.0	10	.0	100.0	450.0
-		Data	Points		
requency (H	Hz) Dev. (%)	Frequency (Hz) Dev. (%)	Frequency (Hz)	Dev. (%)
0.5	0.3	10	0.0	REF FREO	0.0
2	0.0	20	0.1	200	0.2
5	0.1	30	0.1	450	2.5
7	0.1	50	0.1		
Mounting Surface: Calil Acceleration Level (pk) 'The acceleration level	bration Fixture w/Silicone Grease Faste ': 1.00 g (9.81 m/s ²) I may be limited by shaker displacement	er: Stud Fixture Orientation: Vertical at low frequencies. If the listed level cannot b	e obtained, the calibration system uses the follow	ing formula to set the vibration amplitude; Accel	leration Level
(g) = 0.207 x (freq) ² . ²	The gravitational constant used for calcula	tions by the calibration system is; 1 g = 9.80665 Conditi	^{m/s². on of Unit}		
As Found:	In Tolerance		,		
As Left:	In Tolerance		Totas		
I. Calibratio	n is traceable to one	or more of the following;	PTB 10065, PTB 10066 a	nd NIST 683/283498.	
2. This certif	ficate shall not be rep	roduced, except in full, v	vithout written approval fro	om PCB Piezotronics, Inc.	
 Calibratio See Manu 	in is performed in con facturer's Specification	npliance with ISO 10012 on Sheet for a detailed lis	ting of performance specif	ications.	
5. Due to sta	te of art limitations, 1	he test uncertainty ratio	s 3:1. Measurement uncer	tainty (95% confidence le	vel with
coverage fac	tor of 2) for frequence	y ranges tested during ca	libration are as follows: 0.	5-0.99 Hz; +/- 1.8%, 1-30	Hz; +/- 1.0%,
30.01-199 H	lz; +/- 1.5%, 200-1 k	Hz; +/- 3.0%.	RS	1/25/201	10
ochnician'		Ronald Stevens		ate:1/25/20.	18

ACS-11

Model Number:	3701G2FA50G	_		
Serial Number:	7984			
Description:	DC Accelerometer			
Manufacturer:	РСВ	Method: Ba	ck-to-Back Compar	parison AT401-12
Sensitivity	Calibr @ 100 Hz 60.9 mV/g P	ration Data (6. hase Plot	21 mV/m/s²)	
120.0-	1	1		1
100.0-				
50.0-				
egrees				
-50.0-				
-100.0-				
Hz 0.5	1.0	10.0	100.0	450.0
	Da	ta Points		
Frequency (Hz)	Phase (°)	Freque	nev (Hz)	Phase (°)
0.5	-0.3		30	-1.6
	0.1		50	.2.5
	-0.1		50	-2.0
2	-0.2		70	-3.6
5	-0.3	REF.	FREQ.	-5.0
7	-0.4		200	-9.5
,	0.1			5.5
10	-0.6	4	150	-21.4
15	-0.8			
20	-1.0			
20	-1.0	Notes		
 Calibration is trac This certificate sh Calibration is period See Manufacturer Measurement unc are as follows: 0.5-0 	teable to one or more of the following nall not be reproduced, except in full, formed in compliance with ISO 1001 's Specification Sheet for a detailed l ertainty (95% confidence level with 0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0 Ronald Stevens	g; PTB 10065, PTB 10066 without written approval 2-1, ANSI Z540.3 and ISC isting of performance spec coverage factor of 2) for fi 2, 30.01-199 Hz; +/- 1.59	and NIST 683/2834 from PCB Piezotron 0 17025. ifications. requency ranges test 6, 200-1 kHz; +/- 3. Date:	198. ics, Inc. ed during calibration .0%. 1/25/2018
				1/23/2010
	VPCB	PIEZOTRONICS	ν ε .	
		VIBRATION DIVISION		
	2425 Walden Avenue	e Denew NV 14043		

Model Nur	nber:	3711E1150G			
Serial Nun	iber:	8860			
Description	: DC /	Accelerometer			
Manufactur	er:	РСВ	Method: Back-t	o-Back Comparison	AT401-12
		6-11	Dete		
s	ensitivity @ 100 Hz	40.2 mV/g	Data Offset Voltas	re (@ 0 m) 9 3	mVDC
5		(4.10 mV/m/s ²)	Onset Voltag	se (@ 0 g)	inv De
		0			
	Temperature: 71	°F (22 °C)	y Plot Relative Hu	midity: 44 %	
3.0					
1.0					
IB 0.0			*		
-1.0	1				
-2.0					
-3.0		<u>, , , , </u>			
Hz	2.0	10.0	100.0		1000.0
Ensaura	(II-) Day (9/	Data Pol	ints	Enguanau (Hz)	Day (9/
Frequency	(Hz) Dev. (%) Frequency (HZ)	Dev. (%)	200	Dev. (%
5	0.1	30	0.1	500	-0.8
7	0.1	50	0.3	1000	-4.5
10	0.0	70	-0.0	1000	1.0
15	0.1	REF. FREQ.	0.0		
Mounting Surface Acceleration Leve	: Calibration Fixture w/Silicone Grease 1 (pk) ¹ : 1.00 g (9.81 m/s ²)	Fastener: Stud Fixture Orientation: Vertical	d the colibustion statem uses the following t	armula to get the vibration annihitude: Appala	ntion Level
(g) = 0.207 x (free	1) ² . "The gravitational constant used for c	ement at low frequencies. In the fisted lever callion be obtained alculations by the calibration system is; $1 g = 9.80665 \text{ m/s}^2$.	C I Trace 24	ormana to set the violation amplitude, Acceler	anon Lever
	I. In Tolerance	Condition of	y onu		
As Found	In Tolerance				
As Found As Left:		Notes	1	and the second second	
As Found As Left:	ation is traceable to or	ne or more of the following; PTB	10065, PTB 10066 and	NIST 683/283498.	
As Found As Left: 1. Calibra	rtificate shall not be	reproduced, except in run, witho	NSI Z540.3 and ISO 17	025.	
As Found As Left: 1. Calibra 2. This ce 3. Calibra	rtificate shall not be to to the state of th	compliance with ISO 10012-1, A		ations	
As Found As Left: 1. Calibra 2. This ce 3. Calibra 4. See Ma	ertificate shall not be ation is performed in ounufacturer's Specification	compliance with ISO 10012-1, A ation Sheet for a detailed listing	of performance specifica		-1
As Found As Left: 1. Calibra 2. This ce 3. Calibra 4. See Ma 5. Due to	ertificate shall not be ation is performed in our unufacturer's Specifica state of art limitation	compliance with ISO 10012-1, A ation Sheet for a detailed listing is, the test uncertainty ratio is 3:1	of performance specifica . Measurement uncertai	inty (95% confidence lev	el with
As Found As Left: 1. Calibra 2. This ce 3. Calibra 4. See Ma 5. Due to coverage	ertificate shall not be attion is performed in a anufacturer's Specifica state of art limitation factor of 2) for freque $2 H_{32} \pm 1.5\%$ 2000	compliance with ISO 10012-1, A ation Sheet for a detailed listing is, the test uncertainty ratio is 3:1 ency ranges tested during calibra 1 kHz: $\pm (-3.0\%)$	of performance specifica . Measurement uncertain tion are as follows: 0.5-0	inty (95% confidence lev 0.99 Hz; +/- 1.8%, 1-30 H	el with Hz; +/- 1.0%
As Found As Left: 1. Calibra 2. This ce 3. Calibra 4. See Ma 5. Due to coverage 30.01-19 Technicia	ertificate shall not be attion is performed in a anufacturer's Specific state of art limitation factor of 2) for freque 9 Hz; +/- 1.5%, 200- n:	compliance with ISO 10012-1, A ation Sheet for a detailed listing is, the test uncertainty ratio is 3:1 ency ranges tested during calibra 1 kHz; +/- 3.0%. Ronald Stevens	of performance specifica . Measurement uncertain tion are as follows: 0.5-0 Date	inty (95% confidence lev 0.99 Hz; +/- 1.8%, 1-30 H :: 1/25/2018	el with Hz; +/- 1.0%
As Found As Left: 1. Calibra 2. This ce 3. Calibra 4. See Ma 5. Due to coverage 30.01-19 Technicia	ertificate shall not be anufacturer's Specific state of art limitation factor of 2) for freque 9 Hz; +/- 1.5%, 200- n:	compliance with ISO 10012-1, A ation Sheet for a detailed listing is, the test uncertainty ratio is 3:1 ency ranges tested during calibra 1 kHz; +/- 3.0%. Ronald Stevens	of performance specifica . Measurement uncertai tion are as follows: 0.5-0 Date	inty (95% confidence lev 0.99 Hz; +/- 1.8%, 1-30 H :: 1/25/2013	el with Hz; +/- 1.0%
As Found As Left: 1. Calibra 2. This ce 3. Calibra 4. See Ma 5. Due to coverage 30.01-19 Technicia	ertificate shall not be anufacturer's Specific state of art limitation factor of 2) for freque 9 Hz; +/- 1.5%, 200- n:	compliance with ISO 10012-1, A ation Sheet for a detailed listing is, the test uncertainty ratio is 3:1 ency ranges tested during calibra 1 kHz; +/- 3.0%. Ronald Stevens	of performance specifica . Measurement uncertain tion are as follows: 0.5-0 Date OTRONICS	inty (95% confidence lev 0.99 Hz; +/- 1.8%, 1-30 H ::	el with Hz; +/- 1.0%
As Found As Left: 1. Calibra 2. This ce 3. Calibra 4. See Ma 5. Due to coverage 30.01-19 Technicia	ertificate shall not be attion is performed in a anufacturer's Specific state of art limitation factor of 2) for freque 9 Hz; +/- 1.5%, 200- n:	compliance with ISO 10012-1, A ation Sheet for a detailed listing is, the test uncertainty ratio is 3:1 ency ranges tested during calibra 1 kHz; +/- 3.0%. Ronald Stevens Ronald Stevens WIBR	of performance specifica . Measurement uncertait tion are as follows: 0.5-0 Date Date OTRONICS MATION DIVISION Denew NY 14043	inty (95% confidence lev 0.99 Hz; +/- 1.8%, 1-30 H :: 1/25/2013	el with Hz; +/- 1.0%

Model Number:	3711E1150G		
Serial Number:	8860		
Description:	DC Accelerometer		
Manufacturer:	РСВ	Method: Back-to-Back Com	parison AT401-12
Sensitivity (© 100 Hz 40.2 mV/g	Ion Data (4.10 mV/m/c ²)	
	9.00 m 70.2 m 7/g	(4.10 m 4/m/3)	
	Pha	se Plot	
60.0-			
45.0-			
30.0-			
Degrees 0.0-			
-15.0-			~
-30.0-			
-45.0-			
Hz 2.0	10.0	100.0	1000.0
	Data	Points	
Frequency (Hz)	Phase (°)	Frequency (Hz)	Phase (°)
2	-0.2	70	-3.5
5	-0.3	REF. FREQ.	-4.9
7	-0.3	200	-9.5
10	-0.6	500	-23.9
15	-0.8	1000	-48.2
20	-1.0		
30	-1.5		
50	-2.4		
	N	otes	
 Calibration is trace This certificate sha Calibration is perfect See Manufacturer's Measurement unce are as follows: 0.5-0 	eable to one or more of the following; I all not be reproduced, except in full, wi formed in compliance with ISO 10012-1 s Specification Sheet for a detailed listi- rtainty (95% confidence level with cov 99 Hz; +/- 1 8% 1-30 Hz; +/- 1 0%	PTB 10065, PTB 10066 and NIST 683/24 thout written approval from PCB Piezott , ANSI Z540.3 and ISO 17025. ng of performance specifications. erage factor of 2) for frequency ranges t 30.01-199 Hz; ±/-1.5% 200-1 kHz; ±/-	83498. ronics, Inc. ested during calibratior
	Ronald Stevens	Data:	1/25/2018
Technician	Rouad Stevens 1 121	Date:	1/25/2018
Technician:		<u> </u>	1/25/2010