Applied Foundation Testing

April 20, 2018 Revised: April 30, 2018

Final Report of Lateral STATNAMIC Load Testing I-10 Mobile River Bridge Mobile, Alabama AFT Project No.: 518009

Authored By:

Katherine Shaw Staff Mechanical Engineer

For: Mr. Curtis Johnson Jordan Pile Driving, Inc. 301 N. Water Street Mobile, Alabama 36652

Donald T. Robertson, P.E. Principal Geotechnical Engineer Alabama License No.: 22873

REVISIONS 04/27/2018

Introduction

?

1st Paragraph – Interstate 10 over Mobile River – I 10 is the bridge – please reword
 Changed to I10 Mobile River Bridge

Generalized Soil Conditions

- Boring no was MB-1 not MB-11
 - o Corrected
- ? Did not find the boring referenced in Appendix A
 - o Soil Boring record added to Appendix B, reference in document revised.

Geometry Description

? Please double check the bottom elevation of the cage/load cell. It may have been closer to 11 feet above the bottom of the drilled shaft with consideration of the original ground surface resurveyed. Also raised an additional 2 feet in consideration of undercutting soil for lateral testing apparatus -All elevations checked with available records.

Lateral Statnamic Test Setup and Test Pile Instrumentation

- 1st Paragraph we applied a load up to approximately 1500 kips I thought...not 1000 kips
 Orrected
- 6th Paragraph calibration sheets are located in Appendix C not B

 Corrected
- ? Table 1 please double check elevations for sensor locations -see Geometry Description

Page 8 Table 2

?

? There is not a table 2 identification on the table.

o Table identification added.

- Table 2 Effective unit weights should be pcf not pci for the values provided in the table
 - o Corrected

Summary and Conclusions

- ? 1st Paragraph We did not have a rock socket.
 - o Corrected

Appendix A

- ? Graph on Page 10 needs a legend
- ? Graph on Page 15 needs a legend
- Pile Graph on Page 23 needs a title
 All Graphs corrected.
- ? On the LPile (Figure 14) output following Figure 13, appears to be the Linear model. Please identify the graph with a title and include the graph for the non-linear LPile analyses. Confirm "load case" on the legend Figure 14 is the same as the load cases on Figure 13. There appears to be more load scenarios for the Linear/Nonlinear curve on Figure 13 than presented in Figure 14.
 - Graphs and legends were adjusted to reflect actual test loads, and loads added for analysis. Also added additional pile head deflection plot for Type 1 Case.
- ? To better understand the measured vs modeled displacement profile vs elevation, it would be helpful to have Figure 6 overlayed with the L Pile analyses (Figure 14-Linear and Figure 15-Nonlinear).

• For understanding, individual plots for each load case were added comparing raw data, Type 1, and Type 2 deflections.

Appendix B

? Please double check elevations based upon as constructed and surveyed -see Geometry Description

REVISIONS 05/07/2018

- 1. Boring Log MB-1 has not been included in Appendix B and is not labeled on Appendix B cover sheet
 - a. Soil Boring added to Appendix B and Cover sheet
- 2. Figure 6 needs editing as the cycles in the legend seem to be mislabeled.
 - a. Corrected.

INTRODUCTION

This report is provided to summarize the results of the lateral Statnamic load testing performed for the load test program being performed as part of the proposed new Interstate 10 Mobile River Bridge Project in Mobile County, Alabama. The bridge will replace the existing tunnel currently in service. The load test program will consist of installation and testing of 11 driven piles and 1 drilled shaft. Foundation types include HP 14 x 89 piles, 18" PPC square piles, a 60" diameter steel open-ended pipe pile, a 72" diameter drilled shaft, 54" diameter PPC cylindrical piles, and a 30" PPC square pile.

In accordance with our scope of services, Applied Foundation Testing (AFT) performed lateral Statnamic load testing on the test drilled shaft. The test shaft had a design diameter of 72-inches and was constructed with a total overall length of 180 feet. Please refer to the project source documents for a site plan of the actual location of the test shaft. This report only contains the analysis and results of the lateral Statnamic load testing for the referenced test shaft. Results of all other testing (bi-directional load testing, CSL, etc.) performed on the test shaft are provided under separate covers.

Jordan Pile Driving, was the general contractor and provided necessary office and field support to carry out the lateral Statnamic load testing. A.H. Beck was the drilled shaft contractor responsible for the installation of the test shaft and supplied field support to carry out the lateral Statnamic load testing. Applied Foundation Testing (AFT) was the specialty engineering firm performing the lateral Statnamic load testing. Field instrumentation and set up of the Statnamic load test was performed by AFT Technician Mr. Jason Frederick. Data acquisition during testing was performed by Mr. Joseph Bailey, P.E, and Katherine Shaw. Katherine Shaw also performed the data reduction and reporting. Mr. Donald T. Robertson, P.E is the overall project manager and responsible Engineer for the project and provided quality assurance oversight for the data analysis and reporting.

GENERALIZED SOIL CONDITIONS

A soil test boring (Boring No. MB-1) was performed at the shaft location and is included in <u>Appendix B</u>.

In general, the overburden soils at this location consisted of compacted gravel from original ground surface elevation to approximately +3.0 feet. From elevation +3.0 feet to -83.0 there were alternating layers of poorly graded sand/silt and very dense sandy silt. Following this was a layer of fat clay from approximately -83 feet to -98 feet. Below this elevation poorly graded sand sand/silt combinations were present to an approximate elevation of -123.0 feet. Another fat clay layer was present from elevation -128.0 feet to -132.0 feet. Poorly graded sand/silt was present until shaft termination at -170 feet.

These descriptions of soil conditions represent a summary of conditions as indicated in the provided materials and is included only to assist in evaluation of the load test data. For details regarding the soil conditions at the test site and elsewhere, the reader should reference the project source documents.

GEOMETERY DESCRIPTION

Longitudinal shaft reinforcement for the test shaft consisted of thirty-six (36) #11 reinforcement bar pairs from an approximate elevation of +9.88 feet to -118.2 feet and eight (8) #11 reinforcement bars from approximate elevation -10.0 feet to the bi-directional cell assembly. All longitudinal shaft reinforcement was surrounded by #7 spiral shear hoops from approximate elevation of -118.2 feet to -161.6 feet.

The reinforcement cage was constructed with two bi-directional load testing assemblies the upper cell assembly was located at approximately elevation -118.2 feet. The lower cell assembly was located at approximately -161.6 feet in elevation. Please reference project source documents for further details regarding the bi-directional load testing. The reinforcement cage contained eight (8) steel CSL access tubes for integrity testing. Prior to the reinforcement cage being lowered into the excavation AFT tied multiple levels of embedded "sister bar" strain gages to the reinforcement steel to measure the bending strains in the test shaft during the lateral load test. In addition to the embedded strain gage instrumentation, AFT also cast an inclinometer casing into the drilled shaft to allow access for the down-hole accelerometers.

The reinforcement cage was inserted into the excavation and temporarily supported from the permanent casing. A pump and 10.0-inch tremie pipe was used to place concrete. The concrete was pumped from the base of the shaft until sound concrete was observed at the top of the drilled shaft (EL. +10.2 feet).

AFT was not under contract to document the test shaft installation, but we have provided this summary based on our onsite observations and information as provided by the Contractor and the Owner's representatives. For more information on the test shaft construction, the reader should reference the project source documents.

LATERAL STATNAMIC TEST SETUP AND TEST PILE INSTRUMENTATION

Preparation for the Statnamic lateral load test included embedment of strain gage instrumentation and inclinometer casing during construction of the test shaft, and assembly of the Statnamic equipment and instrumentation at the top of the test shaft. Test shaft preparation prior to testing included attaching a hemispherical bearing on the test shaft to transfer the load without restraining the shaft to rotation. Loading was applied in four successively increasing load cycles using a Statnamic device, capable of delivering an applied load to 1,500 kips, and the shaft displacement response measured. Lateral load testing for the test shaft was performed on April 12 and 13, 2018.

The Statnamic device was horizontally mounted on a sled for lateral testing. The device uses a controlled burn of fuel to generate gas pressure inside a cylinder and ram (analogous to a gas actuated jack). As the pressure builds, it reacts against a mass. The pressure eventually builds high enough to propel the reaction mass horizontally away from the foundation; in turn an equal and opposite load is applied horizontally to the test shaft.

The Statnamic device produces a time dependent load on the order of 1/2 second or less. The load produced is not an impact, which makes the Statnamic analysis very simplified and more reliable than dynamic techniques. The applied Statnamic load is measured with a ring type electronic resistance load cell, located between the foundation and the Statnamic piston.

Displacement measurements were provided by double integration of accelerometers. Three accelerometers were mounted on the test shaft at external positions. One accelerometer was mounted at or near the point of load application. The other accelerometers were mounted approximately 7.0 inches and 9.25 inches above the point of load application as a means of redundant top of shaft displacements. Survey measurements (provided by Jordan Pile Driving) were taken before and after each load cycle as a measure of permanent displacement. A string of eight subsurface accelerometers were installed via individual guide mounts, which were lowered into the grooved inclinometer casing that was cast into the test shaft. These accelerometers were oriented to detect lateral motion in the direction of applied load.

Four levels of strain gages (four gages per level) were monitored during testing which was an indication of bending in the test shaft. Sister bar quarter bridge electronic resistance strain gages were manufactured by AFT in our laboratory using Micro-Measurements gauge type CEA-06-125UW-350. The gages were installed on the reinforcement cage prior to its placement inside the excavation.

All of the test shaft data were monitored via a National Instruments data acquisition system with a sampling rate of 10,000 samples per second for each channel. Data reduction and analyses were performed using Matlab® software for each loading cycle. <u>Table 1</u> below contains a summary of the instrumentation locations. Calibration data on the instrumentation is included in <u>Appendix C</u>.

General Shaft Informa	tion
Top of Permanent Casing Elevation (feet)	+10.2
Bottom of Permanent Casing Elevation (feet)	-46.8
Shaft Tip Elevation (feet)	-170.0
Shaft Diameter (EL. +9.92 to -46.8 feet) (inches)	77.0
Shaft Diameter (EL46.8 to -170.0 feet) (inches)	72.0
Top of Concrete Elevation (feet)	+9.9
Concrete Strength used for Analysis (psi)	6,468
Top of Shaft Instrumen	tation
Point of Load Application Elevation (feet)	+6.9
ACCEL_1 Elevation (feet)	+6.9
ACCEL_2 Elevation (feet)	+7.1
ACCEL_3 Elevation (feet)	+9.6
Strain Gage Levels Loc	ations
Strain Gage Level 1 Elevation (feet)	-57.6
Strain Gage Level 2 Elevation (feet)	-77.8
Strain Gage Level 3 Elevation (feet)	-99.1
Strain Gage Level 4 Elevation (feet)	-135.8
Down-Hole Accelerometers	Locations
DH1 Elevation (feet)	+0.3
DH2 Elevation (feet)	-6.3
DH3 Elevation (feet)	-12.3
DH4 Elevation (feet)	-18.3
DH5 Elevation (feet)	-24.3
DH6 Elevation (feet)	-30.3
DH7 Elevation (feet)	-36.3
DH8 Elevation (feet)	-42.3

Table 1. Test Shaft Instrumentation and Key Locations

LATERAL STATNAMIC TEST RESULTS

The lateral Statnamic loads applied to the test shaft are shown as a function of time in Figure 1, while displacement measurements from the double integration of the shaft accelerometer located at the load point are shown as a function of time in Figure 2. An example of all the top of shaft displacements made from double integration of the three external accelerometers are provided in Figure 3 for load cycle number 4; others were similar.

Top of shaft displacements measured from the external accelerometers were corrected to include the permanent displacement measured by a Jordan Pile Driving surveyor between load cycles. The magnitude of permanent displacement has been added to the top displacement measured from the external accelerometers.

The plots in <u>Figures 4 and 5</u> are an example of the acceleration and displacement time histories derived from the uppermost four and the lowermost four, respectively, down-hole accelerometer measurements for load cycle number 4; others were similar. The peak values of displacement at each accelerometer location (load point at top of shaft, and the lower 7 internal down-hole locations) are presented in <u>Figure 6</u> as a function of depth for each of the load cycles. Note the decreasing amplitude of motion of the down-hole accelerometers (below grade) coincides with increasing depth. The strain gage data versus time and the peak strain gage data with depth are shown in <u>Figure 7 and Figure 8</u>, respectively.

The relatively large difference between the magnitude of the tensile strains (+) and the magnitude of the compression strains (-) measured around strain gage level 1 (EL. -57.62) during load cycles 3 and 4 is indicative of significant concrete cracking. The data obtained from the lower strain gage level indicates little to no change in strain during the load testing.

Derived Static Load Procedure

Using a simple single degree of freedom system, an equivalent static response was derived from the Statnamic lateral test measurements. This model includes a nonlinear static spring resistance, inertia of the shaft rotating about a hinge point, and a viscous damping component.

$$F_{\text{Statnamic}} = F_{\text{inertia}} + F_{\text{damping}} + F_{\text{static}}$$

where,

 $\begin{array}{l} F_{Statnamic} = measured force \mbox{ on the Statnamic load cell} \\ F_{inertia} = inertial resistance from effective mass of the foundation \\ F_{damping} = effective viscous damping resistance \\ F_{static} = effective static soil resistance \end{array}$

The inertial resistance is roughly that of a cylinder rotating about its base, with a diameter equal to that of the shaft and a height taken initially as approximately 42.0 feet, based on the observed displacement pattern and bending strain behavior. For such a cylinder of radius r, height h, and mass m, the mass moment of inertia about the base, ly is:

 $I_y = m (r^2/4 + h^2/3)$

The rotational acceleration of such a cylinder in relation to a displacement *x* at the loading point z would be \ddot{x}/z and thus summing moments about the base,

 $(F_{inertia})z = (I_y)(\ddot{x}/z)$

Therefore, $F_{inertia} = (I_y)(\ddot{x}/z^2) = m_e \ddot{x}$

Where m_e may be thought of as the effective mass of the foundation. The effective mass for this shaft based on a height taken initially as 42.0 feet was calculated to be approximately 0.046kN·sec²/mm (3.125 kip·sec²/ft.). It is common to increase the theoretical effective mass of the foundation for analysis purposes in order to include some mass from the passive earth pressure wedge of surrounding soil. The effective mass utilized in our computations was 0.030 (2.105), 0.040 (2.748), 0.043 (2.963), and 0.042 (2.909) kN·sec²/mm (kip·sec²/ft.) for load cycles 1, 2, 3, and 4, respectively.

The damping resistance is presumed to be represented by a viscous damper in which the force $F_{damping}$ is proportional the velocity, \dot{x} , by a constant, c (which is in units of force-sec./length). In order to relate this more meaningfully to a system damping parameter, the damping constant is expressed as a percent of the critical damping, c_c, by

 $D = c/c_c = c/[2(km_e)^{\frac{1}{2}}]$; where k = static stiffness

thus, $F_{\text{damping}} = c \dot{x} = D [2(km_e)^{\frac{1}{2}}]$

The static resistance is modeled as a function of displacement, x, using a spring with stiffness, k_s . Because the soil response for lateral loading at large strains is known to be highly nonlinear, this spring may be modeled as a nonlinear stiffness, which decreases as a function of displacement. For the analyses in this report, the stiffness has been taken as a constant, which is derived independently for each Statnamic loading (and decreases with increased loads). This model was back-fitted to the results of the load test measurements, for each load cycle, to obtain the nonlinear spring and viscous damping parameters which best match the observed behavior.

The damping ratio started at a value of 1.1 for load cycle 1, decreased to 0.75 for load cycle 2 and remained constant at 0.6 for load cycles 3 and 4. Figure 9 shows the initial stiffness (kips/in) on a semi-log scale, these values were obtained from the back-fitted data of four load cycles. Note the stiffness is plotted against the maximum test displacement at the load point location of the shaft for each load cycle. The results of the back fitting process (comparison of computed and measured displacement response at the loading point) are illustrated in Figure 10.

Using this nonlinear spring and dashpot model, a derived static load versus displacement response is constructed as indicated in <u>Figure 11</u>. This derived static model is the basis for comparison with a static test result. The actual total soil resistance (static response plus soil damping) is illustrated in the figure as the "Total Soil Response (Static + Damping)". This total resistance represents the total soil resistance applied to the shaft after consideration of the applied load and the shaft inertia. The equivalent static soil resistance, illustrated in the figure as the "Equivalent Static Load" is comparable to the soil resistance mobilized from a conventional static test.

Derived P-Y Results

For design, it is important to develop a computational model of the soil resistance which provides a good match to the test results. Most designers use a form of "p-y" curve to model the nonlinear static soil resistance for design using a code such as LPILE or FBPIER. For the analysis of a single shaft, LPILE is very convenient; the p-y curves should be the same with either code if the structural foundation is modeled similarly.

The analyses of the test shaft in this manner was complicated by the nonlinear behavior of the composite concrete and steel section which tends to crack and change in effective stiffness (EI) as bending occurs. This model included nonlinear EI as a function of bending. The steel casing (top section only) was modeled using a yield strength of 45 ksi. The rebar was modeled with yield strength of 60 ksi. The inputted concrete strength of the shaft was 6,468 psi, obtained from tests conducted on concrete cylinders a couple days prior to the Statnamic lateral load test. Figure 12 shows the nonlinear EI as a function of bending that would typically be calculated by LPILE.

To back-calculate the soil response from the test measurements, soil parameters are estimated initially from the conditions described in the soil boring and then adjusted to best match the observed load versus deflection response and deflection versus depth response. The soil criteria used for generating the p-y curves used in LPILE to model the test condition are as follows in <u>Table 2</u>. The upper coarse to fine sand and gravel was modeled as "Sand Reese". The clay layers from approximately -123.0 to -129.0 and -162.0 feet to -169.0 feet were modeled as "Soft Clay".

The derived static top of shaft response from the Statnamic test along with the LPILE computed results from the back-fitted model, as described above, are presented in Figure 13. Solutions from both the nonlinear (also known as the Type 3 with the older LPILE versions) and linear elastic (also known as Type 1 with the older LPILE versions) LPILE analyses are shown. The linear analysis is close to the equivalent static soil resistance for load cycles 1 shown, indicating the shaft remained in or near the linearly elastic response during this initial load. The nonlinear analysis is more representative of the shaft tested at higher test loads, while the linear analyses is presented at the higher loads for illustration purposes only of the simpler (elastic) solution. The nonlinear analyses allow the shaft to yield at a lateral load of 2,295 kips, while the linear elastic analyses show the pile behavior if it were not allowed to yield. The displacement profiles measured (obtained from double integration of the accelerometers) and obtained from the LPILE model are presented in Figure 14 and 15. Individual plots of each cycle comparing the raw integrated data, Type 1, and Type 3 analyses results are shown in Figures 16 through 19. Comparisons of the load versus deflection response and deflection versus depth response suggest this computational model appears to capture the behavior relatively well within the general range of suitability for design purposes, generally providing for a conservative solution.

Table 2. Summary of Soil Condition Inputs

		Тор	Bottom
	Layer Elevation (ft)	3.8	5.2
nd ese	Effective Unit Weight (pcf)	125.00	125.00
Sa Re	Friction Angle (degrees)	32.0	32.0
)	p-y Modulus "k" (pcf)	60	60
	Layer Elevation (ft)	5.2	11.2
nd	Effective Unit Weight (pcf)	110.0	45.5
Sa Re	Friction Angle (degrees)	32	32
)	p-y Modulus "k" (pcf)	45	45
	Top of Layer Elevation (ft)	11.2	24.2
nd ese	Effective Unit Weight (pcf)	47.55	47.55
Sa Re	Friction Angle (degrees)	32	32
)	p-y Modulus "k" (pcf)	45	45
(Top of Layer Elevation (ft)	24.2	54.2
nd ese	Effective Unit Weight (pcf)	47.55	47.55
Sa Re	Friction Angle (degrees)	38	38
)	p-y Modulus "k" (pcf)	65	65
	Top of Layer Elevation (ft)	54.2	64.2
nd ese	Effective Unit Weight (pcf)	47.55	47.55
Sa Re	Friction Angle (degrees)	36	36
)	p-y Modulus "k" (pcf)	45	2000
	Top of Layer Elevation (ft)	64.2	94.2
nd ese	Effective Unit Weight (pcf)	67.50	67.50
Sa Re	Friction Angle (degrees)	42	42
)	p-y Modulus "k" (pcf)	120	120
ŋy	Top of Layer Elevation (ft)	94.2	109.2
Cl	`Effective Unit Weight (pcf)	55.55	55.55
oft	Cohesion (lbs/ft^2)	1200	1200
Se	Strain Factor E50	0.002	0.002
	Top of Layer Elevation (ft)	109.2	134.2
nd ese	Effective Unit Weight (pcf)	67.50	67.50
Sa Re	Friction Angle (degrees)	40	40
\smile	p-y Modulus "k" (pcf)	120	120
Ŋ	Top of Layer Elevation (ft)	134.2	139.2
CI	Effective Unit Weight (pcf)	55.55	55.55
lft.	Cohesion (lbs/ft^2)	1200	1200
Sc	Strain Factor E50	0.002	0.002
	Top of Layer Elevation (ft)	139.2	Shaft Tip
nd ese	Effective Unit Weight (pcf)	67.50	67.50
Sai Rec	Friction Angle (degrees)	40	40
0	p-y Modulus "k" (pcf)	120	120

SUMMARY AND CONCLUSIONS

A lateral load test has been performed on a nominal 77-inch (72-inch nominal) diameter by 180.0-foot-long drilled shaft using a lateral Statnamic testing device. From the measurements obtained during the Statnamic loadings, an equivalent static response and system damping has been derived. The equivalent static response provides a basis for comparison of predicted static response using the p-y model.

Soil parameters are presented which were obtained from back-fitting the computed results from LPILE to the derived static top of shaft response from the Statnamic test. Comparisons of the load versus deflection response and deflection versus depth response suggest this computational model appears to capture the behavior relatively well within the general range of suitability for design purposes, generally providing for a conservative solution.

The 77-inch diameter drilled shaft exhibited a lateral response that would typically be expected for the soil at the foundation location. The lateral load testing of this large diameter shaft is believed to provide a high degree of reliability with respect to the back-fit model for design purposes for this foundation.

CLOSURE

We would like to thank you for the opportunity to be involved in this project. We also want to express our gratitude for the field and office support provided by your company. Please do not hesitate to call us if you have any questions regarding the information in this report.

LIMITATIONS

This report presents test measurements made by AFT. Interpretations were made based upon the measurements made by AFT with the latest techniques available and currently accepted standards of care recognized by Geotechnical Engineering professionals. AFT is an independent agency and is not the Geotechnical Engineer of Record. The Geotechnical Engineer of Record should ultimately make final recommendations for foundation design and construction.

Figure 1 - Lateral Statnamic Loads versus Time for Loads 1 through 4

Figure 2 - Displacement at the Load Point versus Time for Loads 1 through 4

Figure 3 - Example: All Top of Shaft Displacements Measurements for Load 4

Figure 4 - Example: Displacement and Acceleration vs. Time from the Upper 4 Down-Hole Accelerometers for Load 4

Figure 5 - Example: Displacement and Acceleration versus Time from the Lower 4 Down-Hole Accelerometers for Load 4

Displacement Profile versus Elevation

Figure 6 - Displacement versus Elevation for Loads 1 through 4

Figure 7 - Strain versus Time for Loads 1 through 4

Figure 8 - Peak Strain versus Shaft Elevation for Loads 1 through 4

AFT Project No.: 518009

Figure 10 - Comparison of Measured to Modeled Shaft Displacements at Load Point

Figure 11- Derived Static Load versus Displacement Response at the Load Point

Bending Moment (in-lbs)

Figure 12 - Non-Linear Stiffness "EI" as a Function of Bending Moment

Displacement at Load Point Elevation (in)

Figure 14 - Type 1 Lateral Pile Head Deflection

Figure 15 - Type 3 Lateral Pile Head Deflection

Figure 16 - Comparison of Raw Data, Type 1, and Type 3 for Load 1

Figure 17 - Comparison of Raw Data, Type 1, and Type 3 for Load 2

Figure 18 - Comparison of Raw Data, Type 1, and Type 3 for Load 3

Figure 19 - Comparison of Raw Data, Type 1, and Type 3 for Load 4

Appendix B

As-Built Test Shaft Schematic Concrete Pour Log Concrete Strength Report Soil Boring Report

Report of Lateral Statnamic Testing I-10 Mobile River Bridge

I-10 Mobile River Bridge AFT Project No. 518009 Mobile, Alabama

				10.		1 0	
Project Number M-I010(341)				County		SW Region	h
Bridge Station		To Station			Bridge Identification N	lumber	
Road Between				and			
Contractor Jordan Pile Driv	ving / A.H. Beck			Inspector Jay Davis	on		
Date 3/23/2018	Bent No. 8	Lane	1.00	Shaft No. TP-WPB		Kind of Soil Silty Sand	
Diameter of Sha 72" / 77" in Cas	ft ing (-46.8 EL)	Sha 1.04	aft Volume per Lir 17 CY / 1.198 C	hear Foot (Vu Y in Casing	⊧) Shaft Tij -170	p Elevation	
Load	Quantity	Slump	Pouri	ng Time	Concrete	Tremie	Cylinder
Number	(Cu. Yds.)	(In.)	Start	Finish	Elevation	Tip Elevation	Number
1	8	7.5	2:22 PM	2:28 P	M -165.3	-165	
2	8		2:28 PM	2:32 P	M -157.1	-165	
3	8		2:32 PM	2:51 P	M -150.6	-165	
4	8	9.5	2:52 PM	3:03 PI	M -143.5	-160	
5	8		3:03 PM	3:09 PI	M -138.6	-155	
6	8		3:10 PM	3:16 P	M -131.0	-150	
7	8		3:19 PM	3:35 PI	M -124.2	-140	
8	8		3:35 PM	3:40 PI	M -117.8	-135	
9	8	9.25	3:40 PM	3:45 PI	M -109.7	-130	
10	8		3:45 PM	3:50 PI	M -102.8	-120	
11	8	30	3:50 PM	3:55 PI	M -93.8	-115	
12	8		3:55 PM	4:00 PI	M -86.5	-110	
13	8	9.5	4:09 PM	4:13 PI	M -79.3	-105	
14	8		4:13 PM	4:19 PI	M -71.8	-90	
15	8		4:19 PM	4:28 PI	M -63.1	-80	
16	8		4:25 PM	4:35 PI	M -56.8	-70	
17	8		4:35 PM	4:39 PI	M -48.8	-60	
18	8		4:39 PM	4:52 PI	M -42.1	-55	
10	0		1.52 DM	4.5C DI	25.7	15	

1. Top of concrete elevation at completion of pour prior to trimming any excess : _

Shaft length before trimming : L = _____ Ft.

3. Corresponding theoretical volume : VT = VLF × L =

Cu. Yds. Volume of excess in last truck : VE = _____

 Volume of overflow (if any) : Vo = _____ Cu. Yds.
 Actual shaft volume before trimming : VA = VQ - VE - VO = _____ Cu. Yds.

7.	Overpour :	VA - VT + 100 -	
	and the second second	VT × 100 = 1 =	

REMARKS

1. Record any problems with the operation of the mixing plant, supply irregularities (concrete delays), or possible setbacks (loss of priming in the tremie, movement of reinforcing steel, difficulties with extraction of temporary casing, caving of shaft wall, etc.) on the back of this sheet in the space provided for observations.

%

A theoretical volume versus elevation line should be plotted on the graph on the back of this sheet prior to concrete placement. 2.

The actual concrete placement curve should be plotted during construction of the shaft. An elevation check should be taken as each truck pours 3. out and the data recorded above and plotted on graph.

4. Any large variations of the actual concrete placement curve from the theoretical placement line should be investigated.

Draw sketch on back of this sheet showing location of shaft. 5.

Correct

Project Manager

Approved_

Area Operations Engineer

Cu. Yds.

Povised 07 15		ILEDS	HAFT P	OURIN	IG RECO	RD	
Project Number M-I010(341)	-94 DIX			County Mobile		Area SW Regio	n
Bridge Station est Shaft		To Station			Bridge Identification	Number	
Road Between				and			
Contractor ordan Pile Driv	ving / A.H. Beck			Inspector Jay Davis	on		
Date /23/18	Bent No. 8	Lane		Shaft No. TP-WPB		Kind of Soil Silty Sand	
Diameter of Sha 2" / 77" in Cas	ft ing (-46.8 EL)	Sha 1.04	ft Volume per Lir 7 CY / 1.198 C	hear Foot (Vur Y in Casing) Shaft T -170	ip Elevation	
Load	Quantity	Slump	Pouri	ng Time	Concrete	Tremie	Cylinder
Number	(Cu. Yds.)	(in.)	Start	Finish	Elevation	Tip Elevation	Number
20	8		4:56 PM	5:01 PI	VI -28.8	-40	
21	8	9.5	5:01 PM	5:05 PI	VI -24.3	-35	
22	8		5:05 PM	5:10 PI	VI -15.8	-30	
23	8		5:10 PM	5:14 PI	VI -9.5	-20	
24	8		5:14 PM	5:20 PI	VI -3.6	-15	
25	8		5:20 PM	5:24 PI	VI 3.2	-10	
26	8	9	5:24 PM	5:30 PI	V 9.0	-5	
27	4		5:40 PM	5:50 PI	VI 10.2	-5	
_							
				-			
		94 			_		

- 1. Top of concrete elevation at completion of pour prior to trimming any excess : 10.2
- 2. Shaft length before trimming : L = 180.2 Ft. 3. Corresponding theoretical volume : $V_T = V_{LF} \times L = 197.3$ Cu. Yds. 4. Volume of excess in last truck : $V_E = 2$ Cu. Yds. 5. Volume of overflow (if any) : $V_0 = 2$ Cu. Yds.

208 6. Actual shaft volume before trimming : $V_A = V_Q - V_E - V_O =$ Cu. Yds.

7. Overpour :
$$\frac{V_{A} - V_{T}}{V_{T}} \times 100 = \frac{5.4}{\%}$$

REMARKS

Record any problems with the operation of the mixing plant, supply irregularities (concrete delays), or possible setbacks (loss of priming in the 1. tremie, movement of reinforcing steel, difficulties with extraction of temporary casing, caving of shaft wall, etc.) on the back of this sheet in the space provided for observations.

A theoretical volume versus elevation line should be plotted on the graph on the back of this sheet prior to concrete placement. 2.

The actual concrete placement curve should be plotted during construction of the shaft. An elevation check should be taken as each truck pours 3. out and the data recorded above and plotted on graph.

Any large variations of the actual concrete placement curve from the theoretical placement line should be investigated. 4.

Draw sketch on back of this sheet showing location of shaft. 5.

Correct

Project Manager

Approved

Report ID: 56081 **Pour Date:** 03/23/2018

Mix ID: DS2A-001-18

John R. Cooper Transportation Director

Project No: IM-I010(341) Project Manager: Davison, Jay Class/Type Concrete: DS-2A Method of Curing in Structure: Other Method Cylinder Field Curing Method: Cylinder Curing Box Time Placing Started/Completed: 02:00 PM / 06:05 PM Supplied/Placed This Date: 212 CuYd / 212 CuYd

Kay Ivey

Governor

Area: Mobile County: MOBILE

Prime Contractor: 11462 JORDAN PILE DRIVING, INC.

Ready Mix Supplier: Bayou Concrete, LLC - 10037 - Mobile, AL Plant 2(Canal)

Weather: Clear

Ambient Placement Temp Begin/End: 75 F / 70 F

Cylinder Field Curing Temp Low/High: 60 F / 80 F

							Test	Records					
Ticket No: 20138293		Test Start: 02:10	PM Tes	t End:	02:20 PM	Slump	(in): 9.25	Air %: 1.5	Temp (F): 82 C	Cast Date: 03/23/2018	Inspector: Burdett, Chris	
Sample ID	Cylinder No	Cylinder Received Date	Test Date	Age	Average Diameter	Length	X-Section Area (sqin)	Total Applied Load	Req'd Strength (psi)	Actual Strength (psi)	Fracture Type	Lab Technician	Lab Remarks
786223	DS-1	03/26/2018	03/27/2018	4	5.98	12.0	28.04	131040	Varies	4670	Type 5	11907 Holland, Travis	N/A
786224	DS-2	03/26/2018	03/28/2018	5	5.97	12.0	27.95	140410	Varies	5020	Туре 3	11907 Holland, Travis	N/A
786225	DS-3	03/26/2018	03/30/2018	7	5.98	12.0	28.09	154430	Varies	5500	Type 5	11907 Holland, Travis	N/A
786227	DS-5												
786226	DS-4												
Ticket No: 20138300		Test Start: 03:20	PM Tes	t End:	03:30 PM	Slump	(in): 9.25	Air %: 1.2	Temp (F): 80 C	Cast Date: 03/23/2018	Inspector: Burdett, Chris	
Samula ID	Culinder No.	Cylinder Received	Test Data	A	Average	Laugth	X-Section Area	Total Applied	Req'd Strength	Actual Strength	Fracture	Lok Toskaision	Lab Pomarka
	Cylinder NO	Date		Age	Diameter	Length	(sqin)	Load	(psi)	(psi)	Туре		
786228	DS-6	03/26/2018	03/27/2018	4	6.00	12.0	28.27	113310	Varies	4010	Type 2	11907 Holland, Travis	N/A
786229	DS-7	03/26/2018	03/28/2018	5	5.98	12.0	28.09	123940	Varies	4410	Туре 3	11907 Holland, Travis	N/A
786230	DS-8	03/26/2018	03/30/2018	7	5.97	12.0	27.99	152990	Varies	5470	Type 5	11907 Holland, Travis	N/A
786232	DS-10												
786231	DS-9												
Ticket No: 20138308		Test Start: 03:50	PM Tes	t End:	04:00 PM	Slump	(in): 9.50	Air %: 2	Temp (F): 79 C	cast Date: 03/23/2018	Inspector: Burdett, Chris	
Sample ID	Cylinder No	Cylinder Received Date	Test Date	Age	Average Diameter	Length	X-Section Area (sqin)	Total Applied Load	Req'd Strength (psi)	Actual Strength (psi)	Fracture Type	Lab Technician	Lab Remarks
786234	DS-11	03/26/2018	03/27/2018	4	5.99	12.0	28.13	129340	Varies	4600	Type 2	11907 Holland, Travis	N/A
786235	DS-12	03/26/2018	03/28/2018	5	5.98	12.0	28.09	140800	Varies	5010	Туре 3	11907 Holland, Travis	N/A
786236	DS-13	03/26/2018	03/30/2018	7	6.00	12.0	28.27	153630	Varies	5430	Type 5	11907 Holland, Travis	N/A
786237	DS-14												
786238	DS-15												

Alabama Department of Transportation Concrete Placement and Testing Report

BMT-174 Pending Tests

Report ID: 56081 **Pour Date:** 03/23/2018

John R. Cooper Transportation Director

Ticket No: 20138314		Test Start: 04:45	PM Te	st End:	04:55 PM	Slump	(in): 9.50	Air %: 1.5	Temp (l	F): 80 C	Cast Date: 03/23/2018	Inspector: Burdett, Chris	
Sample ID	Cylinder No	Cylinder Received Date	Test Date	Age	Average Diameter	Length	X-Section Area (sqin)	Total Applied Load	Req'd Strength (psi)	Actual Strength (psi)	Fracture Type	Lab Technician	Lab Remarks
786239	DS-16	03/26/2018	03/27/2018	4	5.98	12.0	28.09	109580	Varies	3900	Туре 3	11907 Holland, Travis	N/A
786240	DS-17	03/26/2018	03/28/2018	5	5.97	12.0	27.95	126550	Varies	4530	Type 5	11907 Holland, Travis	N/A
786241	DS-18	03/26/2018	03/30/2018	7	5.99	12.0	28.18	164140	Varies	5830	Type 3	11907 Holland, Travis	N/A
786242	DS-19												
786243	DS-20												
Ticket No: 20138321		Test Start: 05:25	PM Tes	st End:	05:35 PM	Slump	(in): 9.00	Air %: 1.5	Temp (I	F): 82 C	Cast Date: 03/23/2018	Inspector: Burdett, Chris	
Sample ID	Cylinder No	Cylinder Received Date	Test Date	Age	Average Diameter	Length	X-Section Area (sqin)	Total Applied Load	Req'd Strength (psi)	Actual Strength (psi)	Fracture Type	Lab Technician	Lab Remarks
786244	DS-21	03/26/2018	03/27/2018	4	5.98	12.0	28.09	105880	Varies	3770	Туре 3	11907 Holland, Travis	N/A
786245	DS-22	03/26/2018	03/28/2018	5	5.97	12.0	27.99	128670	Varies	4600	Type 5	11907 Holland, Travis	N/A
786246	DS-23	03/26/2018	03/30/2018	7	5.99	12.0	28.18	160430	Varies	5690	Type 5	11907 Holland, Travis	N/A
786247	DS-24												
786248	DS-25												
Pay Item(s): 0011 01	.90 506C087 I	Drilled Shaft Const	ruction, 6'-0" I	Diamet	er, Class DS2A	Concrete							

Reviewed by:

General Remarks: Rosalind Pettaway: Lab #99071-0001 Lab #99071-0002 Lab #99071-0003 Lab #99071-0004 Lab #99071-0005 Lab #99071-0006 Lab #99071-0007 Lab #99071-0008 Lab #99071-0009 Lab #99071-0010 Lab #99071

Disclaimer: All tests are in accordance with applicable AASHTO and ASTM specifications: C-31, C-39, C-143, C-172, C-231, C-1064, and C-1231.

CENERAL Control of the state of the contraction of the state of the s	REFIRENCE FISCAL SHEET PROJECT NUMBER YEAR NUMBER IM-1010(341) 2018 15	NOTES RAPPROVAL A CONCRETE MIX WITH MINIMAN DAYS UNLESS SHOWN OTHERWISE ON THE ANSFER OF PRESTRESSING FORCE SHALL BE ANSFER OF PRESTRESSING FORCE SHALL BE T WHEN OTHERWISE NO THE CONTRACT	A. SEVEN WAL, UNCOATED, STRESS-RELIEVED OR REQUIREMENTS OF AASHTO M 203, AN INITIAL SSS-RELIEVED TYPE STRAND, AND AN INITIAL RELAXATION TYPE STRAND.	BE SIE WIN, COLD-DRAWN STEEL WIRE	ND FABRICATION TOLERANCES SHALL BE IN TEMSIONING PROCEDURE SHALL BE SUBMITTED XPOSED CONCRETE CORNERS ARE TO HAVE 34" TE CORNERS ARE TO HAVE 1/2" CHANFER. IS SHOWN ABOVE, HOWEVER, ALL BENT PILES	AVE BEEN DETERMINED USING THE FOLLOWING TENSILE STRESS EQUALS 5V 7°C PSI, THIS REFUL HANDLING OF THE PILE, ROTATION OF TLE IS IN VERTICAL POSITION, PICK-UP POINTS PICK-UP POINTS SHOWN MAY BE MODIFIED FOR E STRESS BASED ON ABOVE LOADING CRITERIA X-UP POINTS SHALL BE SENT TO THE BRIDGE	USED AS PICK-UP DEVICES FOR PRESIRESSED NGS THAT ARE TO BE CONSTRUCTED BELOW DOPS SHALL BE CUT OFF FLUSH WITH FACE OF SHALL BE COATED WITH AN APPROVED EPOXY, RE TO BE CONSTRUCTED ABOVE POOL (WATERLINE, RE TO BE CONSTRUCTED ABOVE POOL (WATERLINE, LU BE CLEARLY SHOWN ON THE PRESIRESSED UL BE CLEARLY SHOWN ON THE PRESIRESSED	INTIMUM OF 21 DAYS PRIOR TO SHIPPING, PILING COMPRESSIVE CONCRETE STRENGTH IS OBTAINED IMUM TIP ELEVATION AS SHOWN ON CONTRACT	PILE HEAD ATTACHMENT BY STRAND EXTENSION BENT CAPS, ABUTMENT CAPS, AND FOR PILE ABOVE POOL (WATERLINE), THE CONTRACTOR'S CLEARLY SHOWN ON THE PRESTRESSED CONCRETE REQUIRED FOR PILES IN FOOTINGS TO BE	TING) SHALL BE SUBJECT TO APPROVAL OF THE EER. CONCRETE SHALL BE THE SAME JOB MIX AS ILES IS PERMISSIBLE SUBJECT TO SATISFYING STANDARD SPECIFICATIONS, REFERENCE THIS ATION REQUIREMENTS,	ENT OF TRANSPORTATION BRIDGE SPECIAL PROJECT DRAWING PRECAST PRESTRESSED CONCRETE PILES I4-16-18-20-24-30 & 36 INCHES I4-16-18-20-24-30 & 36 INCHES IMMTED QUANTITES IMMTED QUAN	Baldwin COUNTY ONLY)
	a. Face) s Only. //de 2"	CONCRETE: THE CONTRACTOR SHALL DESIGN AND SUBMIT FOR AP CONFRESSIVE CYLINDER STRENGTH OF 5,000 P.S.L AT 28 DAYS CONTRACT DRAWINGS, CONCRETE STRENGTH AT TIME OF TRANSFE 4,000 P.S.L. OR GREATER, CEMENT SHALL BE TYPE II EXCEPT WH DRAWINGS, SPECIFICATIONS, OR SPECIAL PROVISIONS.	PRESTRESSING STEEL STRESSING CABLE SHALL BE 1/2" DIA., SE LOW RELAXATION, GRADE 270, AND SHALL CONFORM TO THE REDU TENSION OF 28,910 LBS, SHALL BE APPLIED TO EACH STRESS-A TENSION OF 30,975 LBS, SHALL BE APPLIED TO EACH LOW-RELAX	WEET THE REQUIREMENTS OF ANSHTO-M31. SPIRAL REINFORCING STEEL SPIRAL REINFORCEMENT SHALL BE S AND SHALL CONFORM TO ANSHTO M 22	FABRICATION TOLFRANCES MANUFACTURE DF THE PILING MUD FLACORDANCE WITH THE STANDARD SPECIFICATIONS, THE DETEMSI ACCORDANCE WITH THE STANDARD SPECIFICATIONS, THE DETEMSI TO THE BRIDGE ENGINEER FOR APPROVAL. CHAMFERS ON PILES FOR APROVAL. CHAMFERS ON PILES FOR ARGER, AL EXPOSED CONCRETE CC A THE RAD, CURVE WILL BE PERMITTED IN LIFU OF CHAMFERS SH FURNISHED SHALL BE OF SAME CONFIGURATION.	PICK-LP AND HAND THE MAXIMUM LENGTHS FOR PICK-UP HAVE I STRESS ASSUMPTIONS. LOADING 11/2 TIMES FULL DEAD LOAD. ALLOWABLE TEN STRESS AND LOADING CRITERIA ARE BASED ON CAREFUL STRESS AND LOADING CRITERIA ARE BASED ON CAREFUL PILE IN THE SLING IS TO BE CLEARLY MARKED ON PILE. P FOR ALL PILES TO BE CLEARLY MARKED ON PILE. P FRANSPORTATION PURPOSES PROVIDED THE TENSILE SIT DOES NOT EXCEED 5/7'S PSI. THE MODIFIED PICK-UP DESICN ENGINEER FOR REVIEW.	PICK-UP DEVICES, CAST-IN-PLACE LOOPS WAY BE USED PILES. FOR PILE ABUTMENTS AND FOR PILE FOOTINGS CROUNDLINE, THE FOLLOWING SHALL APPLY, THE LOOPS THE PILE AND EXPOSED SURFACES OF THE LOOPS SHALL FOR PILE BENTS AND FOR PILE FOOTINGS THAT ARE TO THE FOLLOWING SHALL APPLY, A 3"X3" BY 1/2" DEEP R FOR PLOOP PROTRUSION. THE LOOPS SHALL BE CUT OFF FILE AND THE RECESS SHALL BE FILLED WITH AN APPR PILE AND THE RECESS SHALL BE FILLED WITH AN APPR THE 28-DAY STRENGTH SPECIFIED FOR THE PILE PRIOR UP DEVICE TO BE USED BY THE CONTRACTOR SHALL BE CONCRETE FILE SHOP DRAWINGS.	SHEPPING, PILING SHALL BE HELD AT THE PLANT FOR A MINIMU SHALL NOT BE TRANSPORTED UNTIL THE MINIMUM 28 DAY COMP AND VERIFIED BY TEST CYLINDERS. DRIVING: PILES SHALL BE DRIVEN TO AT LEAST THE MINIMUM	PLE HEAD ATTACHMENT, PROVISION SHALL BE WADE FOR PILE I OR DOWEL BAR EXTENSION (SEE DETAIL, THIS SHEET) FOR BENT FOOTINGS WHENEVER FOOTINGS ARE TO BE CONSTRUCTED ABOVE PROPOSED METHOD OF PILE HEAD ATTACHMENT SHALL BE CLEAR PILE SHOP DRAWINGS, A PILE HEAD ATTACHMENT IS NOT REQUI CONSTRUCTED BELOW GROUNDLINE.	BUILD-UP: THE USE OF A BUILD-UP (DRIVING OR NON-DRIVING) BRIDGE ENGINEER, SUBMIT DETAILS TO THE BRIDGE ENGINEER. (THE PRESTRESS CONCRETE, THE PRESTRESS CONCRETE, THE CONDITIONS STATED IN ARTICLE 505.03(c)/2 OF THE STAN ARTICLE OF THE SPECIFICATIONS FOR JET TUBE INSTALLATION	Comment of Strong Prepared Add OF ARTINEN OF A REND THE EVENE OF USE OF THE EVENE THE ALL BEAT THE ALL BEAT	E ENGINEER DATE CHECKEDNO-19-04 DATE DRAWN 11-20-91 ISCALE

-

-

				R OR -	LEFERENCE UECT NUMBER M-1010(341)	FISCAL YEAR 2018	SHEE NUMBE 16	⊢ ∰ I
thompson			SEC	ORI	D OF TES	ST BO	KIN	- 75
Scription: 1-10 Mobile River Bridge and Bayway No.: TH-10 Boring Location: 470+55.32 0	offset: 1	06.31	RT	Alig	ounty: Mob Jument: I-10	Bayway		
12.9 ft. Northing: 245999.249 Easting: Core De Peth: 180.0 ft. Soil Depth: 180.0 ft. Activ Samuli	epth: 0.0	.33 ft.	Da	te Co	arted: 9/7/20 ampleted: 9/	17 8/2017		
ichine: CME 45C Drill Method: MR Hamm ze: N/A Driller: Thompson Eng Groun	ner Type: ndwater:	Auton	natic 1.8 ft.		Energy Rat 24 HR 20	ti o: 86%).0 ft.		11
	dtqaD elqms2 (.ff) elqms2	"9 151	"9 bns	euleV N	● SPT (b) ★ 10 20 30 40	r N VALUE lows/foot) MC L CONTENT (° 50 60 70	80 90 ×	T
50.0 Dense, fine grained	83.5 SS	16 7	5	37	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •		the second se
Medium dense	88 	4	8	16				
Medium dense, moist, red and pale brown, fine to medium grained, POORLY GRADED SAND (SP, A-3(0)), LL=NP PL=NP PI=NP NMC=19.9 %#200=3.7	73.5	-18 10	0				,	<u> </u>
Dense	78.5 	19 12	4	31				
70.0 Medium dense, pale brown and reddish brown, with trace gravel	83.5	-20	7 1	0 17				
75.0 Medium dense, moist, pale brown and reddish brown. fine to medium grained, POORLY GRADED SAND	88.5 8.5 8.5 8.7	-21 6	co.	43	•	· · · · · · · · · · · · · · · · · · ·		1 1 1 1 1
LEGE SAMPLER TYPE SAMPLER TYPE AC - Auger Cuttings etby Tube GB - Grab Bag Dynamic Cone Penetrometer NQ - Rock Core	HSA - HSA - HSA - HA - HH	Hollow S Solid Ster and Auge	DF DF m Auger sr	ers s	G METHOD MR - Mu RC - Roo	ld Rotary Wa ck Coring	ų s	
Alabama Depart	men	t of			sporta			
Bridge Sheet of		5	•••••	5	2			
APPROVED : CONTRACT AL 36606	<u> </u>	SOJEC 0 MO 0 AD T 0BILE	EST F COU	NTYON 12	-1101-0145 ER BRIDGE GRAM ', ALABAMA	~		
GEOTECHNICAL ENGINEER			elimin H		roject No:			
			2	יכ מ	ר אוגע אוגע	r C C L C C L	D	

-

a⁶⁵

.

-

•

-

-

. ..

RECORD OF TE	IO6.31' RT Alignment: Not	228 Eng./Geo.: C 5.33 Date Started: 9/7/20	rtt. Date Completed: 9/ ods: AASHTO T206 & T207	: Automatic Energy Ra TOB 1.8 ft. 24 HR 2	adov/Type 1st 6" 3rd 6" 3rd 6" M Value	S-1 2 4 6 10× • •	S-2 4 8 7 15	S-3 5 8 6 14X b O	S-4 5 6 6 12	S-5 3 4 3 7	S-6 1 2 1 3		S-1 0 0 X			S-8 9 14 15 29 ×▲	 S-9 8 10 13 23★ ▲	DRILLING METHOD Holtow Stem Augers MR - M Solid Stem Augers RC - Rc Hand Auger	SANDY SIL	LEAN CLAN	TOPSOIL	SAND CLAYEY S/		WELL GRA	SANDSTON	
	Bayway 70+55.32 Offset: 7	oject No.: 15-1101-0 Easting: 179761	Core Deptn: 0.0 STM Sampling Meth	Hammer Type Eng Groundwater:	Graphic Log (ft.)	trace (10 - S)), LL=NP (10 - S)		DRLY 3.0 - S					SANDY 13.5 - S		0 feet. AY with C=48.7	rained, A-3(0)),	fine 28.5 - 6	LEGEND HSA - SSA - HA - H	AND (SP)	ILT (MH)	I TV SAND (SM)	OORLY GRADED	VIT (SP-SM) RGANIC SOILS (aving	SRAVEL (GP)	
LO	Aobile River Bridge and I Boring Location: 47	0(005) TE Pro ing: 245999.249	oil Depth: 180.0 ft. 4-inch AASHTO / A:	Drill Method: MR Driller: Thompson	TERIAL DESCRIPTION	and brown, fine grained, with d, SILTY SAND (SM, A-2-4(0))	VMC=17.8 %#200=18.3 reddish brown, fine grained, P	D with SILT (SP-SM) pale brown, fine grained, POO D with SILT (SP-SM, A-2-4(0)),	VMC=21.1 %#200=10.9 moist, gray				, dark gray, with trace gravel, S , A-7-6(14)), LL=55 PL=23 Pl≕ 200=54.0	ind not not not the int int	mple obtained from 18.0 to 20. 24 inches of recovery. / and reddish brown, LEAN CL (15)), LL=39 PL=16 PI=22 NM	moist, white, fine to medium g DED SAND with SILT (SP-SM, PI=NP NMC=26.4 %#200=5.6	moist, white and pale brown, f LY GRADED SAND with SILT	MPLER TYPE AC - Auger Cuttings GB - Grab Bag meter NQ - Rock Core	S S				3 O		0	
thomps(Site Description: 10 N Boring No.: TH-10	ALDOT PE No.; DPI-003 Elev.: 12.9 ft. North	Iotal Depth: 180.0 ft. St Bore Hole Diameter (in):	Drill Machine: CME 45C Core Size: N/A	(∄) (∄) (∄) (∄)	0.0 Loose, light blue	A Medium dense,	GRADED SANE Medium dense, GRADED SANI	5.0 _ PL=NP PI=NP N	5.0 Loose	10.0	J J J J J J J J J J J J J J	15.0 - Very soft, moist FAT CLAY (CH, - NMC=51.7 %#2		2000 - Approximately 2 Moist, dark gray SAND (CL, A-6(25.0	30.0 grained, POOR	SA SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Penetro								

~ 1												
DJECT NUMBER YEAR NUMBER IM-1010(341) 2018 17	D OF TEST BORING	county: Mobile gnment: I-10 Bayway 	Energy Ratio: 86% 24 HR 20.0 ft. • SPT N VALUE (blows/foot) PL MC LL	▲ FINES CONTENT (%) ▲ 10 20 30 40 50 60 70 80 90					vG METHOD MR - Mud Rotary Wash RC - Rock Coring	Isportation	7-1101-0145 ER BRIDGE IGRAM 1, ALABAMA	Project No: DRING RFCORD
PR	COR	Date St Date C		N	22 35	ang na mang na kang na N	8 27 44	V6 × 50	DRILLIN Augers ugers	Fran	NO. 17 LE RIVI 3T PRO OUNTY	minary F
	R R	3.31' RT 8 3 8 8	Automat 1st 6" 2nd 6"		6		0 7	4 30 50	illow Stem Ald Stem A d Auger	of	DJECT MOBIL AD TES BILE C	
		et: 106 101-022(97615.3 h: 0.0 ft. Method	(ft.) ater:		8.22 ' ' ' ' ' 		S S S S S S S S S S S S S S S S S S S	8.5	HSA - Ho SSA - Sol HA - Han	tent	T T T T T T T T T T T T T T T T T T T	
		0115-1 0.: 15-1 3: 17-1 re Depti	Pie Depth ammer		<u>is</u>	÷				artm	C	Щ
		Bayway 70+55.3 roject Nu Easting Co STM Sa		5	-6(42)),		(SM,)ep;	D S O SE HILL JE HILL JE BEGG	ERG III, BINEER
		dge and ation: 4 TE P ₁ 49 0 ft.	d: MR ompson	3	4200=92.3		MC=15.1 MC=15.1	te grained	r Cuttings Bag Core	na L	D BILE, A BILE, A	TERNBE
		tiver Bri ing Loc: 45999.2 th: 180.	II Metho		C=18.1 %#		PI=NP N	sh gray, fir ID with SIL	rYPE AC - Auge GB - Grab NQ - Rock	ban	2970 (2970 (MO	SAM S
	u o	Mobile F Bor 30(005) hing: 24 oil Dep	TERIAL C		uish gray, 1=43 NM(P PL=NF	et, brownis (DED SAN	AMPLER -	Ala	Sheet	/ED : GEOT
	M DS	10 10 DPI-00: North).0 ft. S	ME 450	0=62.6	PL=14 F		00=19.5	dense, w RLY GRA	S/ S/		Bridge	PPROV
	thoi	cription o.: TH-1- E No.: 2.9 ft. 2.9 ft. oth: 180	hine: O	0.0 + 1 %#20			A-24 #1111 #4-24 #20		Spoon oy Tube namic Cor			
		e Desc ing N DOT P V.: 1: V.: 1: e Hole			-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+				- Split - Shelt - Dyr			

-

.

*

.

-

-

CORD OF TE	Alignment: 1-10	Date Started: 9/7/20	Date Completed: 9/ SHTO T206 & T207	ic Energy Ra	aniae N Value Si 10 Si	5 21 37	2 24 46	• 7	·	80 	······································	DRILLING METHOD Augers MR - Mr ugers RC - Rc	SANDYSI SANDYSI SANDYSI SILT and GF SILT and GF
R R	Offset: 106.31' RT	1797615.33	Depth: 0.0 ft. Ning Methods: AAS	mer Type: Automat	Log (.ft.) Sample Sample Vo./Type 1st 6"	93.5 93.5 SS-22 8 16	98.5 SS-23 16 22 36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	103.5 SS-24 2 3	108.0 - ST-2 - ST-2	113.5 SS-25 2 5	118.0 - ST-3	END HSA - Hollow Stem SSA - Solid Stem A HA - Hand Auger	(CH) (CH) SP-SM) SP-SM) SP-SM) SP-SM) SP (OL)
	Location: 470+55.32	99.249 Easting:	180.0 ft. Core L AASHTO / ASTM Samp	ethod: MR Ham		7=NP NMC=24.0		. – – – – – – – – – – – – – – – – – – –	Ifrom 108.0 to 110.0 s of recovery. ce sand, FAT CLAY (CH, 62 NMC=39.5	AN CLAY with SAND	I from 118.0 to 120.0 s of recovery. CLAY with SAND (CL,	LEG Auger Cuttings Grab Bag Rock Core	SAND (SP) SILT (MH) SILT (MH) SILTY SAN Mith SILT (Mith SILT (POORLY O REANIC
hompson ENGINEERING	TH-10 Boring	No.] DPI-UU3U(UU5) ft. Northing: 2459	: 180.0 ft. Soil Depth: Diameter (In): 4-inch	N/A Driller	MATERIAL DESC	(SP, A-3(0)), LL=NP PL=NP F %#200=4.7 Dense	Dense	Firm, moist, dark gray, FAT C	Undisturbed sample obtained feet. Approximately 24 inche Moist, greenish gray, with tra A-7-6(66)), LL=85 PL=23 PI= %#200=93.7	Stiff, moist, greenish gray, LE	Undisturbed sample obtained feet. Approximately 24 inche Moist, greenish gray, LEAN C	oon LER TYPE AC - AC - GB - GB - Cone Penetrometer NQ -	
	Boring No.:	Elev.: 12.9	Total Depth Bore Hole C	Drill Machin Core Size: N	(f) Elevation (f) (f) Elevation (f)	85.0		105.0			120.0	SS - Split Spc ST - Shelby T DCP - Dynam	

					IM-1010(341)		2018	18 18	÷
thompson			REC	ő	RD OF T	EST	BOI	RING	27
Description: 1-10 Mobile River Bridge and Bayway ng No.: MB-1 Boring Location: 514+25.88	Offset:	18.84	LT		County: N	Aobile 10 Mai	n Span		
OT PE No.; DPI-0030(005) TE Project No. .: 2.9 ft. Northing: 249675.65 Easting: I Depth: 300.0 ft. Soil Depth: 300.0 ft. Core	15-1101 1799 Depth:	-0228 417.497 0.0 ft.		ate S	Eng./Geo tarted: 4/2(completed:	B.Ellis 0/2016 4/27/2	C.Tist 016	er	
Machine: CME 550X Drill Method: MR Ha	pling Me mmer Ty	thods: pe: Au	ASH omatic	101	206 & T207 Energy	Ratio:	88%		
	Contraction (11)	Sample Sample	5uq 9	3rd 6			/ALUE /foot) :::::::::::::::::::::::::::::::::::	 80 € €	
	33.55	SS-11	co O	ω	• • • •			1911) 1911)	1 1 1 1
Loose, with trace shells	38.5	SS-12	5 4	ω	•		••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	T I I I I I
Medium dense, wet, pale brown, fine to medium grained, with trace gravel, POORLY GRADED SAND (SP, A-1-b(0)), LL=NP PL=NP PI=NP NMC=22.2 %#200=2.1	43.5	SS-13	4	00	<u></u> 				
-45.0 Loose, wet, pale brown, fine to medium grained, POORLY GRADED GRAVEL with SAND (GP, A-1-a(0)), LL=NP PL=NP PI=NP NMC=11.7 %#200=3.1	48:2	SS-14	ထ	4	••••••••••••••••••••••••••••••••••••••		·····		1 F F
-50.0 Laose, light brown	566666 8 8	SS-15	4	4	•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	r r r r
-55.0 Medium dense, wet, pale brown, fine to medium grained, POORLY GRADED SAND with SILT		SS-16	8 10	ۍ ع	•				
LE Split Spoon Shelby Tube - Dynamic Cone Penetrometer NQ - Rock Core	GEND HA HA	A - Hallow A - Solid (I V Stem Au Stem Aug uger	DRILLI	NG METHOD MR - RC -	Mud Ro Rock Cc	otary Was	-te	<u> </u>
Alabama Depa	rtme	ent o)f T	ิส	nsport	tatio	S		
Thrugo office The second second The second second second The second second second second The second sec		PROJ I-10 M LOAD MOBII	ECT N OBILE TEST -E COI	DNT UNT UNT	7-1101-01 ⁴ ER BRIDG OGRAM Y, ALABAN	45 MA			
APPROVED : SAM STERNBERG III, P. GEOTECHNICAL ENGINEER			Prelimi	nary	Project No:				
DATE :		1	LES1	٣ ٣	DRING Sheet 3 of	REC ∄	XOR		

.. -

RECORD OF TE County: Mol T Alignment: 1-10 Eng./Geo.: C	Date Started: 9/7/20 Date Completed: 9	ASHTO T206 & T207 latic Energy Ra I.8 ft. 24 HR 2	20 Sid 6" Sid 6" Sid 6" C So So So So So So So So So So So So So			DRILLING METHOD em Augers MR - M n Augers RC - RC	SANDY SI SANDY SI SILT and GI SILT and GI SILT and GI
ay 5.32 Offset: 106.31'F No.: 15-1101-0228	ing: 1797615.33 Core Depth: 0.0 ft.	Sampling Methods: A Hammer Type: Autom Groundwater: TOB 1	Graphic Log Sample Depth (ft.) Mo./Type No./Type		LEGEND	HSA - Hollow Ste SSA - Solid Ster HA - Hand Auge	(SP) MH) MH) SAND (SM) SAND (SM) KLY GRADED SAND LT (SP-SM) NIC SOILS (OL) MIC SOILS (OL) FEL (GP)
thompson summerund thompson summerund thompson summerund site Description: 1-10 Boring Location: 470+54 Boring No.: TH-10 Boring Location: 470+54 ALDOT PE No.: DPI-0030(005) TE Project	Elev.: 12.9 ft. Northing: 245999.249 Easti Total Depth: 180.0 ft. Soil Depth: 180.0 ft. C	Bore Hole Diameter (in): 4-inch ASHTO / ASTM : Drill Machine: CME 45C Drill Method: MR Core Size: N/A Driller: Thompson Eng	Depth (ft) Depth	Boring Terminated at 180.0 feet. 'Groundwater depth TOB most ikely influenced by drilling method.		SAMPLER TYPE SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Penetrometer NQ - Rock Core	SAND SILT (SILT (SILT (With S ORGA ORGA

				REFERENCE PROJECT NUMBER	FISCAL SHE YEAR NUM	EET BER
			_	IM-1010(341)	2018 1	
thompson			RECO	RD OF TES	T BORIN	9
escription: 1-10 Mobile River Bridge and Bayway g No.: MB-1 Boring Location: 514+25.8	8 Offset	18.84' L	L L	County: Mobil	le Aain Span	
T PE No.; DPI-0030(005) TE Project No. 2.9 ft. Northing: 249675.65 Easting	15-110 1799	1-0228	Date	Eng./Geo., B.E Started: 4/20/20	ilis/C.Tisher	
Depth: 300.0 ft. Soil Depth: 300.0 ft. Coi Hole Diameter (in): 4-inch AASHTO / ASTM Sa	e Depth: mpling M	0.0 ft. ethods:	ASHTO	Completed: 4/2 T206 & T207	7/2016	
Machine: CME 550X Drill Method: MR H Size: N/A Driller: Thompson Eng G	ammer T)	vpe: Auto	matic 0.0 ft.	Energy Rati	o: 88%)ft.	
Elevation (ft) MATERIAL DESCRIPTION	Graphic Log Sample Depth (ft.)	elqms2 eqvT\.oM "8 1zt	3rd 6"	N Value	N VALUE ows/foot) MC LL ONTENT (%) ▲	
-120.0 Very dense	123.5		29 28	57 51 40		g
125.0 Stiff, moist, gray, with trace sand, FAT CLAY (CH, A-7-6(34)), LL=53 PL=21 PI=32 NMC=23.7 %#200=95.0	28.5 28.5	285-29	2	Q 0	·····	
Medium dense, wet, gray, fine grained, POORLY GRADED SAND with SILT (SP-SM)	1997 1997 1997 1997	2830 2830	7 19	• • 8	·	**************************************
-135.0 Medium dense	138.5		14 15	• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·
-140.0 Medium dense		SS-32 7	8 10	<u>ب</u>	· · · · · · · · · · · · · · · · · · ·	* • • • • • • • • • • • • • • • • • • •
-145.0 - Very dense, wet, gray, fine grained, POORLY GRADED SAND with SILT (SP-SM, A-2-4(0)), LL=NP	54 86 86	SS-33 2(34 27	×5 ••••••••••••••••••••••••••••••••••••	•	······
L samPLER TYPE split Spoon helby Tube Dynamic Cone Penetrometer NQ - Rock Core		SA - Hollow S SA - Solid St A - Hand Aug	DRIL Stem Augers am Augers Jer	LING METHOD MR - Mud RC - Rood	l Rotary Wash k Coring	
			L r			
Bridge Sheet of			5			
Contraction of the second seco	C	PROJE I-10 MC LOAD 1 MOBILE	CT NO BILE RI EST PR E COUN	17-1101-0145 VER BRIDGE OGRAM TY, ALABAMA		an a
APPROVED : SAM STERNBERG III, F	щ		reliminan	/ Project No:		
DATE :		 	EST B	SORING RE	CORD	

RECORD OF TE	et: 18.84' LT Alignment: Mor	101-0228 Eng./Geo.: B. '99417.497 Date Started: 4/20/2	h: 0.0 ft. Date Completed: 4/ Methods: AASHTO T206 & T207	Type: Automatic Energy Ra	Sample Sample Sample Sid 6" 3rd 7" 3rd 7" 3r	3.5	3.5 SS-18 35 50/5 X 50/5	3.5 SS-19 12 28 24 52 52 52	3.5 SS-20 50 X X 100+		3,5 SS-22 0 5 5 •	DRILLING METHOD HSA - Hollow Stem Augers MR - Mi SSA - Solid Stem Augers RC - Ro HA - Hand Auger	S S S S S S S S S S S S S S
U O	Boring Location: 514+25.88 Offs	130(005) IE Project No.: 15-1 thing: 249675.65 Easting: 17	Soil Depth: 300.0 ft. Core Dept 1):4-inch ASHTO / ASTM Sampling	0X Drill Method: MR Hammer Driller: Thompson For Groundw	ATERIAL DESCRIPTION	e, wet, reddish brown and brown, fine to red, POORLY GRADED SAND with SILT (0)), LL=NP PI=NP NMC=19.3	Vo Recovery			se, wet, medium to fine grained, with	tark gray, FAT CLAY (CH) 81 and 100 and	LEGEND SAMPLER TYPE AC - Auger Cuttings GB - Grab Bag trometer NQ - Rock Core	SAND (SP) SILT (MH) SILT (MH) SILTY SAND (SILTY SAND (Mith SILT (SP- Mith SILT
thom p: Evoluce RIN	Boring No.: MB-1	Elev.: 2.9 ft. Nor	Total Depth:300.0 ft.Bore Hole Diameter (ir	Drill Machine: CME 55 Core Size N/A	C Depth (ff) C (ff) C Elevation (ff) (ff) ∑	(SP-SM) 						SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Pene	

ΪЩ	0																
FISCAL SHEI YEAR NUMB 2018 20	TBORIN	ain Span lis/C. Tisher	16 7/2016	o: 88% ft.	N VALUE ws/foot) MC LL ONTENT (%) ▲ 50 60 70 80 90							Rotary Wash Coring	lion				
FEKENCE ECT NUMBER -1010(341)	OF TES	nment: I-10 M o./Geo. B.E	rted: 4/20/20 mpleted: 4/2/	Energy Ratic 24 HR 0.0	● SPT ● SPT ● (blo ★ FINES C		x x x x x x x x x x x x x x x x x x x	· · · · · · · · · · · · · · · · · · ·	• • <td></td> <td></td> <td>METHOD MR - Mud RC - Rock</td> <td>sportat</td> <td></td> <td>1101-0145 R BRIDGE RAM ALABAMA</td> <td>oiect No:</td> <td>the second se</td>			METHOD MR - Mud RC - Rock	sportat		1101-0145 R BRIDGE RAM ALABAMA	oiect No:	the second se
PROJE IM	RD	Alig	e Stal		aule∨ N		<u></u>		32		ŵ	ON ILLING	ans		ROG NTY,	Pn Pn	,
			Dat	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3rd 6"		3 48		3 19		4	DRI				mina	
	RE RE		V	omat 0.0	"9 1st		3		9		4	v Sterr Sterr / uger	f.			Preli	
		18.84	7.497 0 ft.	TO	edyTLoN		\$43		S-44		S-45	- Holtov Hand A	t o		10 M OAD OAD		
		set:	79941 th: 0.(r Type water	(:1)			**1.1.*.			38.5	HSA SSA HA-	ner		ੰ⊥ <		-
		. 15-'	e Dep	emmo	Cataphic Log		N 	ى يې د د وې	\ 		nyana para ang ang ang ang ang ang ang ang ang an	9 9			C	щ	
		yway +25.86	Isting: Con	G Ha			<u></u>	<u>e en el este en en en el e</u>	<u></u>	<u>la deserte de stande stander de stande</u>			ba		S O B NG B NG B NG	G III, P	(
		nd Ba 514 Proje	Ea / AST	on En			SILTY				ND (SM	х Бр			AGE AGE AL 3	IBER(
		dge a	5 .0 ft.	omps	NOL		jrained				TY SAI IMC=25	er Cuttir A Core	na			TERN	ļ
		/er Bri ig Loo	675.6 300	Metho	SCRIP		ly, fine (led, SIL	PE - Auge - Rocitation	Jar	đ	E b c e b c d c d d d d d d d d d d	SAM S	
		lle Riv Borin 05)	: 249 Depth	Drillo	IAL DE		lish gra				e grair ⊢NP F		lat	at	*		
	L OS	030(0	Soil I	X	AATER		wet, blt				gray, fit P P	SAMPI	∢	She			ſ
	й Д Д		0 ft.	ME 5	6	0=88.7	(SM)		e, gray		e, wet, (0)), LL	Bene Pene		Bridge		PPRC	
		MB-	ft. 300	NIA O		%#20	SANC		Dens		Loose A-2-4	oon Tube nic Car				A	
	Ŧ	A No.:	2.9 Depth	achir Nze:	Elevation (ff)	510.0	215.0	225.0	, , , , ,	-230.0		Split Sp Dynar Dynar					
	States -	DEO	1:: - 7	2		╋ <u>╌╴╴╄</u> ╶╌┸╉┈╍┈┢╓┉╍┉┢┲╌╌╴╄╴╌┸╉		the second se	·····	<u> </u>							

•

(

RECORD OF TE RECORD OF TE 84' LT County: Mob 84' LT Alignment: 1-10 84' LT Alignment: 1-10 87 Date Started: 4/20/2 97 Date Started: 4/20/2 85: ASHTO T206 & T207 Automatic Energy Rationality 100 0.0 ft. 24 HR	1st 6" 3rd 6" 3rd 6" 1st 6" 0 20 3rd 6" 0 20 3rd 6" 0 20 3rd 6"	4 26 24 32	5 23 47 50+ 100 X • O	6 11 19 18 37 × 0	7 11 18 25 43 8 16 19 20 39	DRILLING METHOD bliow Stem Augers MR - Mu d Augers RC - Ro	SANDY SIL SANDY SIL EAN CLAYEY SA CLAYEY SI CLAYEY SIL SILT and GF SILT and GF SILT and GF
thompson Boring No.: I-10 Mobile River Bridge and Bayway Site Description: I-10 Mobile River Bridge and Bayway Boring No.: Boring Location: 514+25.88 Offset: 18.8 Boring No.: MB-1 Boring Location: 514+25.88 Offset: 18.8 Boring No.: MB-1 Boring Location: 514+25.88 Offset: 18.8 Boring No.: MB-1 Boring Location: 514+25.88 Offset: 18.8 Icotal Depth: 300.0 ft. Soil Depth: 300.0 ft. 15-1101-0228 17.49 Icotal Depth: 300.0 ft. Soil Depth: 300.0 ft. ASHTO / ASTM Sampling Methods Bore Hole Diameter (in); 4-inch ASHTO / ASTM Sampling Methods: AI AI Drill Machine: CME 550X Drill Method: MR AI AI Drill Machine: CME 550X Driller: Thompson Eng Groundwater: To	Ö (ft) Ö (ft) Ö (ft) Ö Graphic Log Log Gample Depth (ft.) (ft.) (ft.) Ö (ft.) Ö (ft.) Ö Sample Depth (ft.) (ft.) Ö Ö	PL=NP PI=NP NMC=22.5 %#200=10.5 -150.0 155.0 155.0 Virih trace clay 160.0 Very dense	 -160.0 -160.0 Very dense, wet, greenish gray, fine grained, with trace gravel, POORLY GRADED SAND with SILT (SP-SM, A-2-4(0)), LL=NP PI=NP NMC=23.8 %#200=11.5 %#200=11.5 		^{175.0} ^{175.0} ^{175.0} ^{-175.0} ^{-175.0} ^{Dense, wet, gray, fine grained, POORLY GRADED SAND with SiLT (SP-SM) ^{-175.0} ^{Dense} ^{5S-37} ^{SS-37} ^{SS-37} ^{SS-37} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38} ^{SS-38}}	LEGEND SAMPLER TYPE SS - Split Spoon ST - Shelby Tube ST - Shelby Tube DCP - Dynamic Cone Penetrometer NO - Rock Core HA - Hand	SAND (SP) SILT (MH) SILT (MH) MID (SP) SILT SAND (SN) MID (SP-SN) CGGANIC SOLS (OL) Paving CRAVEL (GP)

		MEFERENUE FISUAL SHEEL PROJECT NUMBER YEAR NUMBER IM-I010(341) 2018 21
	NOMPSON ENGINEERING	RECORD OF TEST BORING
soring No	Iption: 1-10 Mobile Kiver Bridge and Bayway	fset: 18.84' LT Alignment: I-10 Main Span
LDOT PE lev.: 2.9	No.1 DPI-0030(005) TE Project No.115 ft. Northing: 249675.65 Easting: 1	-1101-0228 Eng./Geo.: B.Ellis/C.Tisher 1799417.497 Date Started: 4/20/2016
otal Dept Sore Hole	h: 300.0 ft. Soil Depth: 300.0 ft. Core Del Diameter (in): 4-inch ASHTO / ASTM Samplin	pth: 0.0 ft. Date Completed: 4/27/2016 Date Completed: 4/27/2016 Methods: AASHTO T206 & T207
orill Mach	Ine: CME 550X Drill Method: MR Hamme N/A Driller: Thompson Eng Ground	er Type: Automatic Energy Ratio: 88% dwater: TOB 0.0 ft. 24 HR 0.0 ft.
uc		epth Blows/foot)
(ft) (ft) Elevatic (ft)	MATERIAL DESCRIPTION	A Valu (ft.) Sample D (ft.) Srd 6 N Valu A Valu
		00 10 20 30 40 50 60 70 80 90
	Boring Terminated at 300.0 feet.	
-		
		3
	LEGE1 SAMPLER TYPE	ND DRILLING METHOD
SS - Split 5 ST - Shelb DCP - Dyn	poon / Tube amic Cone Penetrometer NQ - Rock Core	HSA - Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers RC - Rock Coring HA - Hand Auger
	Alabama Departi	ment of Transportation
	Bridge Sheet of	
	thom nson	PROJECT NO. 17-1101-0145
	ENGINEERING	1-10 MOBILE RIVER BRIDGE
	MOBILE, AL 36606	MOBILE COUNTY, ALABAMA
	APPROVED : SAM STERNBERG III, P.E.	
	GEOTECHNICAL ENGINEER	Preliminary Project No:
		Sheet 6 of 12

.

RECORD OF County:	Ditset: 18.84* L Alignmen 5-1101-0228 Eng./Ge	epth: 0.0 ft. Date Complet	ner Type: AUtomatic 24 H ndwater: TOB 0.0 ft 24 H	Sample Depth (ft.) Sample No./Type 3rd 6" 3rd 6" 3rd 6" 5 3rd 6" 5 3rd 6" 5 5 3rd 6" 5 5 6	248.5 248.5 248.5 248.5 248.5 21 1 21 21 21 21 21 21 21 21 21 21 21 2		258.5 SS-47 30 50/0 X 50/0	268.5 258.15 25.48 43 50 X 50/6	END DRILLING METH HSA - Hollow Stem Augers SSA - Solid Stem Augers	SSA - Solid Stem Augers HA - Hand Auger (CH) (CH) (CH) (CH) (CH) (CH) (CH) (CH)	
10 Mobile River Bridge and Bayway	-0030(005) TE Project No.:	orthing: 249675.65 Easting: Soil Depth: 300.0 ft. Core E	(in): 4-inch AASHIO / ASIM Samp 550X Drill Method: MR Ham Driller: Thomson Fng Group	MATERIAL DESCRIPTION			e, wet, gray, fine grained, POORLY SAND with SILT (SP-SM)	e, with trace gravel	LEG SAMPLER TYPE AC - Auger Cuttings GB - Grab Bag	enetrometer NG - Rock Core NG - Rock Core SILT (MH) SILT (MH) SILT (MH) Mith SILT (MH) CRGANIC CRAVEL (
Site Description: -	Boring No.: MB-1 ALDOT PE No.: DPI-	Elev.: 2.9 ft. N Total Depth: 300.0 ft	Bore Hole Diameter Drill Machine: CME	240.0 (ff) (ff) (ff) (ff) (ff)	245,0	250.0	255.0	265.0 -260.0 -265.0 -265.0 -265.0 -265.0 -265.0 -265.0 -265.0 -265.0 -265.0 -265.0 -265.0 -270.0 -27	SS - Split Spoon ST - Shelby Tube	ST - Sheiby Tube DCP - Dynamic Cone P.	

Report of Lateral Statnamic Testing I-10 Mobile River Bridge AFT Project No. 518009

Mobile, Álabama

MODEL No.	C392	9-1	SERIAL No.	13	
RATED CAPACITY	22 1800	MN MT	FULL SCALE SENSITIVITY	1.7594 1.4117	MV/V* AT RATED CAR
OUTPUT WITH APPLIED ACROS	50,000 [Ω] S BLACK AND W	SHUNT	RESISTOR 1.20	024 mV/∖	l°
FOR ROUTINE I	MILL TION G SYSTEM	SHUNT SIMUL APPL	RESISTOR ATES ICATION OF	68.34 85.18	% of RA CAPAC
INPUT RES. GREEN (+), BLACK	261.2 [Ω]	AT 23° (77° F	C OUTPUT R) RED (+). WHIT	ES. 25	2.2 [Ω]
* OPEN CIRCUIT M	EASUREMENT (AN	IPLIFIER I	DISCONNECTED)	BY:	Stefan Ge

P. 18

*

CERTIFICATE OF TESTS

Load Cell:

Model No.	C3929-1	Work Order:	JR10483
Serial No.	13	Tested By:	WP
		Approved By:	Stefan Georgiev
		Test Date:	26-May-2016

The above identified load cell was calibrated in accordance with ASTM E74-13a.

Rated Capacity: (F	ull Scale)	22 / 1800 MN/MT	
Full scale sensitivi	ty:	1.7594 / 1.4117 mV/V	
Combined Error: ¹ Zero offset: ²		≤ 0.1 % of full scale 0.023 mV/V	
Electrical connecti	on:	4 FT Twisted, 4-conductor, shielded cable.	
Excitation Positive: Excitation Negative: Signal Positive: Signal Negative:	GREEN BLACK RED WHITE	Input resistance: (Black & Green) ² 261.2 Output resistance: (Red & White) ² 252.2 Excitation Voltage: 10	Ω Ω VDC

Load Limits:

300 % of rated capacity without zero shift³ 500 % of rated capacity without change in characteristics⁴

Output with shun	t resistor conne	cted between BL	ACK and WHITE lead	is:
------------------	------------------	-----------------	--------------------	-----

Shunt Res. [Ω]	OUTPUT(shunt) [mV/V]	% of Rated Capacity	SIMULATED OUTPUT [MN]
50,000	1.2024	68.34 / 85.18	15.035
100,000	0.6021	34.22 / 42.65	7.529
150,000	0.4017	22.83 / 28.46	5.023

Reference Document:

KELK Drawing No. 28852

Notes:

¹ The combined error is defined as the permitted error envelope which covers linearity, hysteresis and repeatability.

² Measured at room temperature, including cable.

³ No change in load cell characteristics.

⁴ Highest permissible single loading without damage:

⁵ Compensation Range: 20 to 100 °C

KELK Form #892 Rev. 2014-12-18

GEORGE KELK CORPORATION

		LC	DAD CELL CA	LIBRATION	NREPORT			
Model No.: C3929			Work Order		No: JR10483			
Serial No).:	13	Bridge 1 of	3	Test date:		05-19-20	16
Capacity	:	2200000	0 N		Test by:		WP	
Calibratio	on facility:	1000000	0 ІЬ					
	****	*****	******** PRELC	DAD CYCLE	*******	********	*****	
	Preload	Load %	Load	[N]	Load ce	loutput	[mV/V]	
	1	150.1	3301	7204.0		2.6321		
	2	150.2	3303	7238.0		2.6408		
	3	150.1	3303	0262.0	2.6409			
	****	*****	***** CALIBRA	TION CYCI	LE ********	*******	******	
	Coefficient	ts of optimized lin	e fit: Theore	tical output at	t full load	Maximum	Maximum	Number
Test No.	OUTP	UT = A+B*LOAI		B*CAPACIT	Y	linearity	hysteresis	of test
	A [mV/	V] B [mV/V	/N]	[mV/V]		error [%]	error [%]	samples
1	0.004	I 7.9979E	-08	1.7595		0.111	0.154	691
2	0.004	7 7.9954E	-08	1.7590		0.110	0.153	678
3	0.004	7 7.9950E	-08	1.7589		0.107	0.139	685

Load values were based on the output from master calibration load cells,

C1880_20, C1880_12, C1880_13, C1880_14, C1880_15, C1880_16, C1880_17, C1880_18, C1880_19, . calibrated in accordance with ASTM specification E 74-91 against standard traceable to the National Institute of Standards and Technology in Washington D.C. USA. Based on the test data from 3 load cycles, the load cell output vs. applied load is represented by the straight line equation of the form: OUTPUT=A+B*LOAD, where the coefficients A and B are as follows:

A =	0.0045	mV/V
B =	7.99717E-08	mV/V/N

Optimized full load sensitivity= $B^{CAPACITY} = 1.7594$ mV/V

Standard deviation of least squares fit: s =	0.0010 mV/V
Uncertainty (ASTM E74-91) = 2.4*s =	0.0025 mV/V
or	31315.2 N
or	0.14 % of full scale output

0.14 % of full scale output

Output with shunt resistor put across BLACK and WHITE leads:

ſ	Shunt Res.	OUTPUT(shunt)	SIMULATED OUTPUT			
	[K-ohm]	[mV/V]	%	[N]	[kg]	[lb]
=>[50	1.2024	68.34	15035811.0	1533192.2	3380184.0
->[100	0.6021	34.22	7529304.0	767758.4	1692654.5
->[150	0.4017	22.83	5022678.5	512159.4	1129142.8
Γ	200	0.3013	17.13	3768161.4	384237.1	847116.2
Ī	250	0.2412	13.71	3015516.1	307490.3	677914.8
Ĩ	300	0.2010	11.42	2513066.6	256255.8	564959.7
Ī	350	0.1723	9.79	2154439.1	219686.8	484337.1
ſ	400	0.1508	8.57	1885289.7	192241.8	423829.9
Ī	500	0.1206	6.86	1508373.9	153807.9	339095.9
Ī	600	0.1005	5.71	1256989.6	128174.4	282582.4
Ī	700	0.0862	4.90	1078131.8	109936.4	242373.6
ĺ	800	0.0754	4.28	942594.0	96115.7	211903.5

Maximum test linearity error Maximum test hysteresis error

Maximum test repeatability error

Combined error (+/-)

% of full scale output 0.116

0.154 % of full scale output

0.037 % of full scale output

0.116 % of full scale output

Page 2. (Computed Load Table)

GEORGE KELK CORPORATION LOAD CELL CALIBRATION REPORT

Model No.:	C3929		Work Order No:	JR10483
Serial No.:	13	Bridge 1 of 3	Test date:	05-19-2016
Capacity:	22000000	N	Test by:	WP
Calibration facility:	10000000	lb		

	Test No.1			Test No.2	_	Test No.3		
Load	Applied	Load Cell	Load	Applied	Load Cell	Load	Applied	Load Cell
Step	Load	Output	Step	Load	Output	Step	Load	Output
%	[N]	[mV/V]	%	[N]	[mV/V]	%	[N]	[mV/V]
10.01	2202096.8	0.1814	10.02	2205295.3	0.1819	10.01	2202172.0	0.1815
14.98	3296566.3	0.2683	14.99	3297257.0	0.2685	15.13	3327960.3	0.2708
20.02	4403782.0	0.3567	20.04	4407787.0	0.3572	20.01	4401986.5	0.3566
24.94	5486938.0	0.4434	24.92	5482094.0	0.4432	24.87	5471070.5	0.4422
30.13	6628926.5	0.5350	29.87	6571482.0	0.5306	30.14	6630306.5	0.5352
35.01	7702057.0	0.6210	34.86	7668868.0	0.6185	34.95	7688134.5	0.6200
39.94	8785963.0	0.7078	40.09	8819159.0	0.7107	39.92	8782701.0	0.7077
44.88	9874659.0	0.7951	45.00	9899419.0	0.7972	44.95	9889994.0	0.7964
49.91	10979253.0	0.8834	50.07	11016187.0	0.8865	50.13	11028017.0	0.8874
54.87	12072069.0	0.9707	54.91	12079451.0	0.9714	55.10	12121057.0	0.9747
60.06	13212162.0	1.0618	59.95	13189496.0	1.0601	60.04	13209283.0	1.0616
65.09	14319261.0	1.1502	64.97	14293014.0	1.1481	65.04	14308382.0	1.1493
70.07	15414816.0	1.2375	70.05	15411891.0	1.2374	70.01	15401304.0	1.2364
75.09	16518949.0	1.3255	74.98	16495793.0	1.3238	75.01	16502157.0	1.3241
79.89	17574852.0	1.4097	79.89	17576384.0	1.4098	79.96	17590284.0	1.4109
84.89	18675880.0	1.4974	85.07	18714960.0	1.5005	84.93	18683942.0	1.4980
89.89	19774894.0	1.5848	89.98	19795984.0	1.5866	89.90	19777736.0	1.5850
95.12	20926174.0	1.6765	95.02	20903450.0	1.6748	95.10	20922352.0	1.6761
100.08	22017870.0	1.7633	99.97	21994266.0	1.7615	100.04	22007952.0	1.7625
95.11	20924842.0	1.6765	95.03	20907668.0	1.6753	95.01	20902336.0	1.6748
90.02	19803560.0	1.5875	89.90	19778764.0	1.5857	89.92	19783290.0	1.5859
85.00	18700908.0	1.4998	85.10	18721504.0	1.5016	85.08	18716554.0	1.5011
80.02	17604012.0	1.4126	80.10	17621440.0	1.4141	80.07	17616282.0	1.4135
75.04	16508084.0	1.3253	75.12	16525893.0	1.3269	75.01	16502226.0	1.3250
70.10	15422471.0	1.2389	69.88	15373893.0	1.2352	70.01	15401565.0	1.2373
64.88	14273865.0	1.1473	64.89	14274822.0	1.1475	65.06	14313005.0	1.1505
59.98	13196312.0	1.0613	59.91	13180754.0	1.0602	60.11	13223305.0	1.0637
55.06	12112237.0	0.9747	54.91	12079913.0	0.9724	55.11	12123936.0	0.9759
49.91	10980639.0	0.8842	49.99	10998709.0	0.8859	49.96	10990830.0	0.8853
44.95	9888036.0	0.7968	45.12	9926231.0	0.8000	44.91	9880452.0	0.7964
39.98	8795148.0	0.7092	40.00	8799391.0	0.7097	40.11	8823959.0	0.7117
35.03	7707375.5	0.6219	35.06	7713487.0	0.6226	35.11	7725251.0	0.6236
30.07	6614339.0	0.5341	30.11	6624381.5	0.5350	30.12	6625468.0	0.5351
24.89	5476621.5	0.4423	25.02	5503913.0	0.4448	24.93	5484179.0	0.4432
19.98	4396573.5	0.3551	19.91	4380765.5	0.3542	19.94	4386725.5	0.3547
15.09	3319595.0	0.2682	15.10	3322271.3	0.2687	14.91	3279873.3	0.2653
9.95	2189979.3	0.1777	10.08	2217168.3	0.1802	9.93	2184692.3	0.1776

	~ (Calibratio	on Certif	<i>icate</i> ~ Per ISO 16063-21	· · ·
Model Number:	3	711B1130G			
Serial Number:		LW11331			
Description:	DC Acce	lerometer	•		
Manufacturer:	F	PCB	- Method:	Back-to-Back Compa	rison AT401-3
	· · · · · · · · · · · · · · · · · · ·				
		Calibre	ation Data		
Sensitiv	ity @ 100 Hz	65.9 mV/g	Offs	set Voltage (@ 0 g)	-1.3 mVDC
		(6.72 mV/m/s ²)			
		Sens	itivity Plot		
10.0	Temperature: 72 °F (2	2 °C)		Relative Humidity: 38 %]
5.0					
96					
⁷⁰ 0.0- (
-5.0-					
-10.0-		r			
100.0 Hz		D	- Daluda		
Frequency (Hz)	Dev. (%)	Dai	a Poinis		
REF. FREQ.	0.0				
300	-0.2			-	
500	-0.9				
1000	-3.6				
Mourting Surface: Calibration 1	Findure w/Silicone Grease Fastere:	: Stud Fixture Orientation: Vertical			
Acceleration Level (pk)* 10.0 The acceleration level may be (g) = 0.003 x (freq) ³ . The gra-	g (>8.1 m/s-) e limited by shaker displacement a vitational constant used for calculation	low frequencies. If the listed level cannot ns by the calibration system is; $1 g = 9.806$	be obtained, the calibration system us is m/s ^a .	es the following formula to set the vibration	emplitude; Acceleration Level
As Founds n/		Condit	ion of Unit		
As Found: <u>nva</u> As Left: No	ew Unit, In Tolera	nce			
			Notes		
1. Calibration is 2 This certificat	NIST Traceable t shall not be repr	hru Project 683/28732 oduced, except in full.	23 and PTB Traceab without written appr	le thru Project 17014. oval from PCB Piezotro	nics, Inc.
3. Calibration is	performed in com	pliance with ISO 10012	2-1, ANSI/NCSL Z5	40-1-1994 and ISO 1702	25.
4. See Manufact	urer's Specification	a Sheet for a detailed li confidence level with c	sting of performance overage factor of 2)	e specifications. for frequency ranges tes	ted during calibration
are as follows:	5-9 Hz; +/- 2.0%,	10-99 Hz; +/- 1.5%, 10	00-1999 Hz; +/- 1.0	%, 2-10 kHz; +/- 2.5%.	
Technician		leffrey Mattison	(JM) 3426	Date	1/10/2019
					1/17/2010
		PCB P	IEZU I KUNIK	.5	
	2 01	3425 Walden Avenue	VIBRATION DIVISI Depew, NY 14	ON 1043	
PAGE 1 of 4	TEL	: 888-684-0013 - FAJ	2: 716-685-3886 - 1	www.pcb.com	CAL14-3599243067.897+0
ACS-103					

Model Number: 3711B1130G Serial Number: LW11331 Description: DC Accolerometer Manufacturor: PCB Method: Back-to-Back Comparison AT401-3 Calibration Data Sensitivity @ 100 Hz 65.9 mV/g (6.72 mV/m/s ²) Degree Good Good At401-3 Degree Degree Good Good Good Job Degree Degree <thdegree< th=""> Degree <t< th=""><th>~</th><th>Calibration</th><th>n Certifi</th><th><i>Cate ~</i> Per ISO 16063-21</th><th></th></t<></thdegree<>	~	Calibration	n Certifi	<i>Cate ~</i> Per ISO 16063-21			
Serial Number:	Model Number:	3711B1130G					
Description: PCB Method: <u>Back-to-Back Comparison</u> <u>AT401-3</u> <i>Calibration Data</i> Sensitivity @ 100 Hz 65.9 mV/g (6.72 mV/m/s ⁴) <i>Phase Plot</i> <i>Phase Plot</i> <i>Phase Plot</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degrees</i> <i>Degre</i>	Serial Number:	LW11331					
Menufacture: PCB Method: Back-to-Back Comparison AT401-3 Calibration Data S.9 mV/g (6.72 mV/m/s ²) Degree 0.6.9 mV/g (6.72 mV/m/s ²) Hz Data Points Data Points Frequency (Hz) Phase (*) (6.92 mV/g) NB 7.0 300 -21.3 300 -21.3 500 -35.4 1000 -70.4 NOS NEF, FREQ. -7.0 300 -21.3 500 -35.4 1000 -70.4 1000 -70.4 NOS NOS Maturbaturd's Specification Short for a detailed bit top Orgent State 100 1025. NOS Maturbaturd's Specification Short for a detailed listing of performance specifications. NOS modeline 100 VIS NOS Measurament uncertainty (95% confidence level with coverage factor of 210 for frequency range tot during cellibration are as fallows: 5.9 Hz; + 1.0%, 10.0 Hz; + 1.0%, 2.10 LHz; + 2.3%. <t< td=""><td>Description: DC A</td><td>ccelerometer</td><td></td><td></td><td></td></t<>	Description: DC A	ccelerometer					
Calibration Data Year 6.5 m/g (6.72 m/m/m)	Manufacturer:	РСВ	Method:	Back-to-Back Compa	rison AT401-3		
Bensitivity @ 100 Hz 6.5 m V/g (6.72 mV/m/s ²) Place Plot 900 9000 900 900		Calibra	tion Data				
<section-header> Phase Plat opgerege indicator indindicator indicator indindicator indicator</section-header>	Sensitivity @ 100 Hz	65.9 mV/g		(6.72 mV/m/s²)			
Phase Plot Degrees							
90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 25.0 90-0 21.3 900-0 21.3 900-0 25.4 1000 70.4		Pho	use Plot				
Degrees 26.0 42 40.0 50.0	90.0-						
Degrees 25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -25.0 -7.0 -30.0 -21.3 50.0 -35.4 100.0 -70.4 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20.0 -20	50.0-						
0.0 -25.0 -35.0 -35.4 100.0 -70.4 300 -21.3 500 -35.4 1000 -70.4 1000.10.1, ANSNEYNEX Logitation State for a detailed listing of performance specifications. Inc. 3. See Manufacturer's Specification Sheet for a detailed listing of performance specifications are as follows: 5.9 Hz; +1.0%, 21.0 Hz; +1.10%, 21.0 Hz; +1.2.5%. Technician:	25.0			······································			
233	0.0-						
Image: state of the second state state state of the second state state state state of the second state state of the second	-25.0-						
Build Data Points Data Points Frequency (Hz) Phase (*) REF. FREQ. -7.0 300 -21.3 500 -35.4 1000 -70.4 Notes Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. Notes 2. This certificate shall not be reproduced, except in full, without written approval from PCB Plezotronics, Inc. Scalibration is performed in compliance with ISO 10012-1, ANSI/NCSL 2540-1:1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Date:	-75.0-						
Data Points Frequency (ff2) Phase (*) REF. FREQ. -7.0 300 -21.3 500 -35.4 1000 -70.4 Notes Localibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" <td <<="" colspan="2" td=""><td>-90.0- Hz ^{100.0}</td><td></td><td></td><td></td><td>1000.0</td></td>	<td>-90.0- Hz ^{100.0}</td> <td></td> <td></td> <td></td> <td>1000.0</td>		-90.0- Hz ^{100.0}				1000.0
Frequency (fiz) REF. FREQ. Phase (*) -7.0 300 -21.3 500 -35.4 1000 -70.4 Notes Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without writen approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Iffrey Mattison Yation Yation Yation Yation Yation Network Depret NDT Network Yation Network Depret Network Depret Network Depret NDT Network Depret Network Depret Note Network Depret Network Depret NDT Network Depret Not Net	-	Data	. Points				
Prequency (nz) Prime (r) REF. FREQ. -7.0 300 -21.3 500 -35.4 1000 -70.4 I. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Precortonics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison July 2000 Date: J19/2018 VIDERATION DIVISION 3425 Wakie Avenue Depex, NY 11403 TEL: 388-684-0013 FAX:716-685-3886 TEL: 388-684-0013 FAX:716-685-3886		Phase (°)					
300 -21.3 500 -35.4 1000 -70.4 In Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician:	REF. FREO.	-7.0					
300 -21.3 500 -35.4 1000 -70.4 Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison Jeffrey Mattison MER 1 d 4		01.0					
500 -35.4 1000 -70.4 Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL 2540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison Jeffrey Mattison Jeffrey Mattison Mattison Jeffrey Mattison Lists 884 684-0013 Tel: s884-684-0013 Mattine M	300	-21.3					
1000 -70.4 Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. Alibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 3. Calibration's Specification Sheet for a detailed listing of performance specifications. 3. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 KHz; +/- 2.5%. Technician: Image: Infere Mattison Mage Date: Infere Mattison Mage Date: Infere Mattison Mage Date: Infere Mattison Mage Date: Inferee Mattison Mage <td>500</td> <td>-35.4</td> <td></td> <td></td> <td></td>	500	-35.4					
Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: I Jeffrey Mattison Jeffrey Mattison Jeffrey Mattison VIBERATION DIVISION 3425 Walden Avenue Depew, NY 14043 TEL: 388-684-0013 FAX: 716-685-3886 www.pcb.com CALI4-359920067.857-05	1000	-70.4					
Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison JM JM 3426 Date: 1/19/2018 VIEPATION DIVISION 3425 Walden Avenue Deperv, NY 14043 TEL: 388-684-0013 FAX: 716-685-3886 www.pcb.com CALH-339920967.867-6							
Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison JM JM M2426 Date: 1/19/2018 VIEPATION DIVISION 3425 Walden Aveme Depew, NY 14043 PRE 2 of 4							
Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison JM JM JM Date: 1/19/2018 VIERATION DIVISION A25 Walden Avenue Depew, NY 14043 TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com CALI4-359923367.8740							
Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison JM Jage Date: 1/19/2018 VIERATION DIVISION 3425 Walden Avenue Depew, NY 14043 TEL: 388-684-0013 YERATION DIVISION ACK 104							
Notes 1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison JM JM 3426 Date: 1/19/2018 NEPATION DIVISION 3425 Walden Avenue Depew, NY 14043 TEL: 388-684-0013 FAX: 716-685-3886 wwww.pcb.com CAL14-339924367.89740							
1. Calibration is NIST Traceable thru Project 683/287323 and PTB Traceable thru Project 17014. 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison JM JM 3426 Date: 1/19/2018 VIBRATION DIVISION 3425 Walden Avenue Depew, NY 14043 TEL: 888-684-0013 · FAX: 716-685-3886 · www.pcb.com Cali4-399243067.89740		ת	Notes				
 2. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. 3. Calibration is performed in compliance with ISO 10012-1, ANSI/NCSL Z540-1-1994 and ISO 17025. 4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison Jeffrey Mattis	1. Calibration is NIST Traceat	ole thru Project 683/28732	3 and PTB Traceabl	e thru Project 17014.			
4. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. 5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison JM JA26 Date: 1/19/2018 WERATION DIVISION 3425 Walden Avenue Depew, NY 14043 TEL: 388-684-0013 FAX: 716-685-3886 www.pcb.com CALI4-3399243067.897+0	2. This certificate shall not be r	eproduced, except in full, v	vithout written appro -1. ANSI/NCSL 7.54	oval from PCB Piezotro 40-1-1994 and ISO 170	onics, Inc. 25.		
5. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 5-9 Hz; +/- 2.0%, 10-99 Hz; +/- 1.5%, 100-1999 Hz; +/- 1.0%, 2-10 kHz; +/- 2.5%. Technician: Jeffrey Mattison Jage Date: 1/19/2018 Date: 1/19/2018 WIBPATION DIVISION 3425 Walden Avenue Depew, NY 14043 TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com CALI4-3599243067.89740	4. See Manufacturer's Specifica	ation Sheet for a detailed lis	ting of performance	specifications.	1 1 1. 1. 1. 1 11 -1		
Technician: Jeffrey Mattison JM WIBPATION DIVISION 3426 Date: 1/19/2018 VIBPATION DIVISION 3425 Walden Avenue · Depew, NY 14043 TEL: 888-684-0013 · FAX: 716-685-3886 · www.pcb.com CALI4-3599243067.897+0	5. Measurement uncertainty (9)	5% confidence level with co %, 10-99 Hz: +/- 1,5%, 10	overage factor of 2) : 0-1999 Hz: +/- 1.09	for frequency ranges te %, 2-10 kHz; +/- 2.5%	sted during calibration		
PAGE 2 of 4 TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com CALI4-3599243067.897+0	Testerision	Inffras Matticon	JM	Date:	1/19/2018		
PAGE 2 of 4 TEL: 888-684-0013 FAX: 716-685-3886 www.pcb.com CALI4-3599243067.897+0							
3425 Walden Avenue · Depew, NY 14043 PAGE 2 of 4 TEL: 888-684-0013 · FAX: 716-685-3886 · www.pcb.com CAL14-3599243067.897+0 ACS-103 UIII UNI UNI UNI UNI UNI UNI UNI UNI UNI		"PCB P	EZUI KUNI				
PAGE 2 of 4 I ELL. 556-064-0015 * FAAL /10-053-5660 * 474 W-19C0.Com CAL14-3399243067.89740 ACS-103 UNI DRI DRI DRI DRI DRI DRI DRI DRI DRI DR		3425 Walden Avenue	Depew, NY 14	043 vvvv pcb.com			
	PAGE 2 of 4				CAL14-3599243067.897+0		

	~ (Calibratior	ı Certifi	Cate ~ Per ISO 16063-21	
Model Number	3	711B1130G			
Serial Number:	:	LW11331			
Description:	DC Acce	lerometer			
Manufacturer:	H	РСВ	Method:	Back-to-Back Comparison	n <u>AT401-12</u>
		Calibast	low Data		
S	41-114-1 @ 100 W-		on Dulu		
Sensi	tivity @ 100 Hz	65.9 mV/g			
		(0.72 m v/m/s ⁻)			
		Sensiti	vity Plot		
10.0-	Temperature: 71 °F (2	22 °C)	F	Relative Humidity: 39 %	
5 n					
0.0					
% 0.0-					
-5.0-					
-10.0-}		10.0	I		100.0
HZ		Data	Points		
Frequency (H	z) Dev. (%)	Frequency (H	Iz) Dev. (%)		
2	0.0	20	0.1		
5	0.0	30	0.1		
7 .	0.1	50	-0.0		
10	0.0	70	0.1		
15	0.1	REF. FREC	Q. 0.0		
Mounting Surface: Calibr	ntion Fixture w/Silicone Grease Fasten	er, Stud Fixture Orientation: Vertical			
Acceleration Level (pk)': 'The acceleration level of (a) = 0.207 = ((mo))	1.00 g (9.81 m/s ²) nay be limited by shaker displacement is be completional constant used for calculat	at low frequencies. If the listed level cannot be introduced by the calibration system is: $1 g = 9.80665$ m	obtained, the calibration system use	es the following formula to set the vibration amplitu	de; Acceleration Level
(g)= 0207 x (nea)1	IE Grandina constant for for another	Conditio	on of Unit		
As Found:	<u>n/a</u>				
As Left:	New Unit, In Tolera	ince N	otas	······································	
1 Calibration	is traceable to one o	or more of the following:	PTB 10065, PTB 1	0066 and NIST 683/283498	•
2. This certifi	icate shall not be repr	oduced, except in full, w	ithout written appro	oval from PCB Piezotronics	, Inc.
3. Calibration	n is performed in com	pliance with ISO 10012-	1, ANSI Z540.3 an	d ISO 17025.	
4. See Manuf	facturer's Specifications the of art limitations the	n Sheet for a detailed list	s 3:1. Measuremen	t uncertainty (95% confider	ce level with
coverage fact	tor of 2) for frequency	y ranges tested during cal	ibration are as follo	ows: 0.5-0.99 Hz; +/- 1.8%,	1-30 Hz; +/- 1.0%,
30.01-199 H	z; +/- 1.5%, 200-1 k	Hz; +/- 3.0%.	JM		
Technician:		Jeffrey Mattison	3426	Date:1/1	9/2018
			F7ATRANII	~~ ~	
	2	<i>ار ا</i> لیک ہے ۔ v	BRATION DIVISI	ON	
	ED] #1862.01	3425 Walden Avenue	Depew, NY 14	043	
PAGE 3 of 4	TE.	L: 888-084-0013 · FAX:	/10-0856-680-01/	www.pco.com	CAL14-3599243312.761+

~ Calibration Certificate ~					
Model Number:	37118	1130G			
Serial Number:	LW1	1331			
Description:	DC Acceleron	neter			
Manufacturer:	РСВ		Method:	Back-to-Back Co	omparison AT401-12
		<i>a</i> 111			
Sensitivit	ty @ 100 Hz	65.9 mV/g	ttion Data	(6.72 mV/m/s^2)	
Sensitivit	.,	03.7 m 7/g		(0.72 11 7 11.75)	
		Ph	ase Plot		
10.0-					
Degrees					
0.0-					
-10.0-					
Hz 2.0		10.0			100.0
		Dat	a Points		
Frequency (Hz)	Phase	(°)	Fr	equency (Hz) 70	Phase (°)
2	-0.2	2	_		-5.1
5	-0.3	3	ł	REF. FREQ.	-7.4
7	-0.5	5			
10	-0.8	3			
15	-1.1	1			
20	-1.:	5			
20	2.4	n			
30	· -2	2			
50	-3.0	6			
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0%, 30.01-199 Hz; +/- 1.5%, 200-1 kHz; +/- 3.0%. 					
Technician:	Je	ffrey Mattison	(JM) 3426	Date:	1/19/2018
	TEL: \$\$\$-	3425 Walden Avenue -684-0013 - FAX	Depew, NY 14 2 716-685-3886 v	043 vww.pcb.com	CAL14-3599243312.761+0
ACS-103					

PCB

47836

Capacitive Accelerometer

Sensor Information

Serial Number: LW6495

Model Number: 3711B1130G

~Calibration Certificate~

65.88

-7.01

1.00

mV/g

deg.

g

3149 East Kemper Rd. Cincinnati, OH 45241 Ph : 513-351-9919 Fax: 513-458-2172 www.modalshop.com

Transducer Specifications Amp. Range: ± 30

Amp. Range:	± 30	g
Resolution:	0.0035	g
Resonant Freq:	≥ 4000	Hz
Temp. Range:	-54 to 121	°C
	-65 to 250	۴F
Axis:	Uni-Axial	

Data Table

Manufacturer:

ID Number:

Description:

Freq. (Hz)	Deviation (%)	Phase (deg)
0.5	-0.1626	-0.0534
1	-0.2460	-0.0969
2	-0.2637	-0.1342
3	-0.2144	-0.1869
4	-0.1751	-0.2778
5	-0.1535	-0.3346
7	-0.1482	-0.4506
8	-0.0487	-0.5282
10	0.0182	-0.6634
30	-0.0194	-2.2111
50	0.0240	-3.5229
100	0.0000	-7.0108
200	0.0861	-13.8882
300	-0.1506	-20.9373
400	-0.0791	-27.7213
500	0.0017	-34.6268
600	0.1314	-41.5239
700	0.2355	-48.4881
800	0.4064	-55.4263
900	0.6951	-62.3885
1000	0.9722	-69.4414

Customer

TMS Rental 3149 E. Kemper Rd Cincinnati, OH 45241 User Notes

Lab Conditions

 Temperature:
 74 (23)
 ♀ (℃)

 Humidity:
 39
 %

39 %

11-Jan-18

Cal Date: Due Date:

Approval Information

Phase Response

Calibration Data

Sensitivity @ 100 Hz:

Phase @ 100 Hz:

Test Level:

Notes

Results relate only to the items calibrated.

This certificate may not be reproduced except in full, without written permision.

Method: Back-to-Back Comparison Calibration per ISO 16063 Part 21

This calibration was performed with TMS 9155 Calibration Workstation 1 version 6.0.0 Calibration traceable to NIST (project number 822/271196).

Back-to-Back Comparison Calibration per ISO 16063-21

Procedures Used: PRD-P220, PRD-P214

Measurement uncertainty (95% confidence level with coverage factor 2) for frequency ranges tested during calibration are as follows: 0.5-1 Hz; 1.10%; >1-10 Hz; \pm 0.80%, 11-99 Hz; \pm 1.20%, 100 Hz; \pm 0.75%, 101-920 Hz; \pm 1.00%, 921-5000 Hz; \pm 1.40%, 5001-10,000 Hz; \pm 1.90%, 10,001-15,000 Hz; \pm 2.20%, 15,001-20,000 Hz; \pm 2.8%.

Unit Condition

As Found: In Tolerance

As Left: In Tolerance

Equipment Used

Description	Manufacturer	Model	Serial	Due Date
Data Aquisition Card	NI	PCI-4461	19A1EE8	8/29/2018
Ref Std Conditioner	NI	PCI-6251	136F2A3	2/13/2018
Reference Std	PCB	080A200	110553	5/26/2018
Air Bearing Shaker	PCB	396C11	603	п/а
Ref Std Conditioner	PCB	442A102	305	5/26/2018
SUT Signal Conditioner	PCB	445B101	557	10/25/2018
Power Amplifier	TMS	2100E21-C	50002	n/a
Reference Std	TMS	2129E025	111	2/13/2018
Long Stroke Shaker	TMS	2129E025-779	111	n/a
				Page 1 of 1

Model Nu	umber:	371	1E1150G			
Serial Nu	mber:		8860			
Descriptio	m:	DC Acceler	ometer			
Manufactu	urer:	PCI	3	Method: Back-to	-Back Comparison	AT401-12
			<u> </u>			
	Sensitivit	v @ 100 Hz	Calibration L	Offset Voltage	(@ 0 m) 93	mVDC
	o charter,	, (6 100 m	(4.10 mV/m/s ²)	Onset Voltage		invDe
			0	n/		
	Те	mperature: 71 °F (22 °	C) Sensitivity I	Plot Relative Hum	idity: 44 %	
3.	.0-					
1	.0-					
iB o	.0-			×		
-1	0-					
-2						
-3.	.0-					
Hz	2.0	1	0.0	100.0		1000.0
F	(II.a)	Der: (0/)	Data Poin	ts	Englisher (Hz)	Day (9/
Frequen	cy (HZ)	Dev. (%)	Frequency (HZ)	Dev. (%)	200	Dev. (%
4	5	0.1	30	0.1	500	-0.8
7	7	0.1	50	0.3	1000	-4.5
1	0	0.0	70	-0.0	1000	1.0
1	5	0.1	REF. FREQ.	0.0		
Mounting Surfa Acceleration L	ace: Calibration Fixts evel (pk)1: 1.00 g (9	rre w/Silicone Grease Fastener: Stud 81 m/s²)	Fixture Orientation: Vertical	to addression minters used the following for	mula to cat the vibration annihituda. Accelera	ntion Level
I ne acceleration	freq) ² . ² The gravita	tional constant used for calculations by	the calibration system is: $1 g = 9.80665 \text{ m/s}^2$.	T 7 24	mula to set the violation ampirtude, Acceler	anon Lever
(g) = 0.207 x (f	nd: In T	olerance	Condition of	Unit		
(g) = 0.207 x (f	In T	olerance				
(g) = 0.207 x (f As Four As Left:			Notes	and the second second	Summer Sector	
(g) = 0.207 x (f As Four As Left:	ration is tr	aceable to one or me	ore of the following; PTB 1	0065, PTB 10066 and 1	NIST 683/283498.	
(g) = 0.207 x (f As Four As Left: 1. Calib	centificate	erformed in complia	ance with ISO 10012-1, AN	SI Z540.3 and ISO 170	25.	
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This (3. Calib	ration is po	er's Specification SI	heet for a detailed listing of	performance specificat	ions.	
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This of 3. Calib 4. See M	ration is p /anufactur		est uncertainty ratio is 3:1.	Measurement uncertain	ty (95% confidence leve	el with
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This of 3. Calib 4. See N 5. Due t	ration is p Aanufactur o state of a	art limitations, the to		on are as follows: 0.5-0	.99 Hz; +/- 1.8%, 1-30 F	1Z; +/- 1.0%
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This of 3. Calib 4. See M 5. Due t coverage	Pration is p Manufactur to state of a e factor of 00 Hz : ± 1	2) for frequency rat	nges tested during calibratic $+/_{-3} 0\%$			
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This of 3. Calib 4. See M 5. Due t coverag 30.01-1 Technici	Anufactur o state of a e factor of 99 Hz; +/- ian:	art limitations, the to 2) for frequency ran 1.5%, 200-1 kHz;	nges tested during calibratic +/- 3.0%. Ronald Stevens (4270)	Date:	1/25/2018	8
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This of 3. Calib 4. See N 5. Due t coverag 30.01-1 Technici	Anufactur o state of a e factor of 99 Hz; +/- ian:	art limitations, the to 2) for frequency random 1.5%, 200-1 kHz;	nges tested during calibratic +/- 3.0%. Ronald Stevens 4270	Date:	1/25/2018	8
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This of 3. Calib 4. See M 5. Due t coverag 30.01-1 Technici	Anufactur o state of a e factor of 99 Hz; +/- ian:	art limitations, the to 2) for frequency rand 1.5%, 200-1 kHz;	Ronald Stevens PIEZO	Date:	1/25/2018	8
(g) = 0.207 x (f As Four As Left: 1. Calib 2. This (3. Calib 4. See N 5. Due t coverag 30.01-1 Technici	Anufactur o state of a e factor of 99 Hz; +/- ian:	art limitations, the to 2) for frequency ran 1.5%, 200-1 kHz;	A25 Wolden Averue	Date:	1/25/2018	8

Model Number:	3711E1150G		
Serial Number:	8860		
Description:	DC Accelerometer		
Manufacturer:	РСВ	Method: Back-to-Back Com	parison AT401-12
Sensitivity (D 100 Hz 40.2 mV/g	Ion Data (4.10 mV/m/c ²)	
	9	(4.10 11 7/11/3)	
	Pha	se Plot	
60.0-			
45.0-			
30.0-			
Degrees 0.0-			
-15.0-			~
-30.0-			
-45.0-			
Hz 2.0	10.0	100.0	1000.0
	Data	Points	
Frequency (Hz)	Phase (°)	Frequency (Hz)	Phase (°)
2	-0.2	70	-3.5
5	-0.3	REF. FREO.	-4.9
7	0.3	200	0.5
,	-0.5	200	-9.5
10	-0.6	500	-23.9
15	-0.8	1000	-48.2
20	-1.0		
30	-1.5		
50	-2.4		
		100	
 Calibration is trace This certificate sha Calibration is performed. See Manufacturer's Measurement uncertained as follows: 0,5-0 	No sable to one or more of the following; F all not be reproduced, except in full, wi formed in compliance with ISO 10012-1 a Specification Sheet for a detailed listi rtainty (95% confidence level with cov 99 Hz; +/- 1.8% 1-30 Hz; +/- 1.0%	oftes PTB 10065, PTB 10066 and NIST 683/23 thout written approval from PCB Piezotte , ANSI Z540.3 and ISO 17025. ng of performance specifications. erage factor of 2) for frequency ranges to 30.01-199 Hz; +/- 1.5% 200-1 kHz; +/-	83498. ronics, Inc. ested during calibratior
	Ronald Stevens	Data	1/25/2018
Technician	The second		
Technician:	Konaid Stevens (42)	<u> </u>	1/25/2018

Mode	l Numb	er:	3701G2FA50G			
Serial	Numbe	er:	3795			
Descri	ption:	DC Ac	celerometer			
Manut	facturer:		РСВ	Method: Back-	to-Back Comparison	AT401-12
			Calibratio	n Data		
	Sen	sitivity @ 100 Hz	59.9 mV/g	Offset Volta	ge (@ 0 g) 9.6	mVDC
			(6.10 mV/m/s^2)	Resonant	Frequency 1.5	9 kHz
		Temperature: 72 °F	Sensitive	<i>ity Plot</i> Relative H	umidity: 41 %	
	3.0-					
	1.0-					
iΒ	0.0-					
	-1.0-					
	-2.0-					
	-3.0-	10	10.0		100.0	450.0
Hz	0.5	1.0	D-1- D		100.0	450.0
Freq	uency ()	Hz) Dev. (%)	Frequency (Hz) Dev. (%)	Frequency (Hz)	Dev. (%)
	0.5	-0.3	10	0.1	70	0.1
	1	-0.6	15	0.1	REF. FREQ.	0.0
	2	0.0	20	0.0	200	0.5
	5	0.0	30	0.1	450	3.9
	7	0.0	50	0.1		
Mounti Acceler The ac (g) = 0.	ng Surface: Cal ration Level (pk celeration leve 207 x (freq) ² .	ibration Fixture w/Silicone Grease Fast): 1.00 g (9.81 m/s ²) if may be limited by shaker displacemen "The gravitational constant used for calcu	ener: Stud Fixture Orientation: Vertical at at low frequencies. If the listed level cannot be obta lations by the calibration system is, 1 g = 9 80665 m/s ² .	aned, the calibration system uses the following	formula to set the vibration amplitude; Accele	ration Level
Ast	Found:	In Tolerance	Condition	of Unit		
Asl	Jeft:	In Tolerance				
			Not	es	1 2 11 0 77 (0 2 /2 0 2 10 0	
1. C 2. T 3. C	alibratic his certi alibratic	ficate shall not be rep on is performed in con	or more of the following; P1 produced, except in full, with mpliance with ISO 10012-1,	out written approval from ANSI Z540.3 and ISO 1	n PCB Piezotronics, Inc. 2025.	
4. 5 5. D cove	to state erage fac	ate of art limitations, stor of 2) for frequence $47 + 4_2 = 1.5\%$ 200-11	the test uncertainty ratio is 3 cy ranges tested during calibi kHz: +/- 3.0%	:1. Measurement uncerta ration are as follows: 0.5	ations. inty (95% confidence lev 0.99 Hz; +/- 1.8%, 1-30	rel with Hz; +/- 1.0%,
Tech	nician:		Ronald Stevens (4270	Dat	e: 1/25/201	8
					11201201	-

Model Number:	3701G2FA50G		
Serial Number:	3795	_	
Description:	DC Accelerometer		
Manufacturer:	PCB	Method: Back-to-B	Back Comparison AT401-12
Sensitivit	<i>Cal</i> y @ 100 Hz 59.9 mV/g	ibration Data (6.10 mV/ Phase Plot	m/s²)
120.0-			
50.0-			
egrees			
0.0-			×
-50.0-			
-100.0-	····		
Hz 0.5	1.0	10.0	100.0 450.0
	1.2.2.2	Data Points	
Frequency (Hz) 0.5	Phase (°) -0.6	Frequency (H: 30	z) Phase (°)
	0.2	50	2.0
	-0.2	50	-2.0
2	-0.2	70	-2.8
5	-0.3	REF. FREQ.	-4.0
7	-0.3	200	-7.3
10	-0.5	450	-16.4
15	-0.7		
20	-0.9		
20	-0.7	Notes	
 Calibration is tr This certificate Calibration is p See Manufactur Measurement up are as follows: 0.3 Technician: 	aceable to one or more of the follow shall not be reproduced, except in fu- erformed in compliance with ISO 10 er's Specification Sheet for a detaile ncertainty (95% confidence level wi 5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1 Ronald Stevens	ving; PTB 10065, PTB 10066 and NI all, without written approval from PC 0012-1, ANSI Z540.3 and ISO 17025 ed listing of performance specification th coverage factor of 2) for frequency .0%, 30.01-199 Hz; +/- 1.5%, 200-1 RS 4270 Date:	ST 683/283498. CB Piezotronics, Inc. w ranges tested during calibration 1 kHz; +/- 3.0%. 1/25/2018
	[⊕] PCB	PIEZOTRONICS	112012010

	~ (Calibration	n Certifica	te~	
Model Num	ber: 3	701G2FA50G		10003-21	
Serial Numb	er:	7497			
Description	DC Acc	elerometer			
Manufacture	De Add				
Walturacture	•	PCB	Method: Back	-to-Back Comparison	AT401-12
		Calibrati	ion Data		
Ser	nsitivity @ 100 Hz	60.2 mV/g	Offset Volta	age (@ 0 g) 0.2	mVDC
		(6.14 mV/m/s ²)	Resonant	Frequency 1.7	0 kHz
		Sensiti	vity Plot		
3.0-T	Temperature: 71 °F (22 °C)	Relative H	umidity: 45 %	
2.0-				1	
1.0-	ы ().				
dB 0.0-					118 1. mar a Ar
-1.0-					
-2.0-				• • • • • • • • • • • • • • • • • • •	
-3.0-+	5 1.0	10.0)	100.0	450.0
Hz		Data	Points		
Frequency	(Hz) Dev. (%)	Frequency (H	lz) Dev. (%)	Frequency (Hz)	Dev. (%)
0.5	-0.8	10	0.1	70	0.0
1	0.1	15	0.3	REF. FREQ.	0.0
2	0.2	20	0.2	200	0.5
5	0.3	30	0.1	450	3.3
7	0.2	50	0.2		
Mounting Surface: C Acceleration Level ('The acceleration le (g) = 0.207 x (freq)?.	alibration Fixture w/Silicone Grease Fasten kly: 1.00 g (9.81 m/s ²) vel may be limited by shaker displacement a "The gravitational constant used for calculati	rr. Stud Fixture Orientation: Vertical at low frequencies. If the listed level cannot be c ions by the calibration system is: $1 g = 9.80665$ m Condition	obtained, the calibration system uses the following 19. 19. Of Unit	g formula to set the vibration amplitude: Acceler	ation Level
As Found:	In Tolerance				
As Len:	In Tolerance	No	otes	· · · · ·	
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Due to state of art limitations, the test uncertainty ratio is 3:1. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0%, 30.01-199 Hz; +/- 1.5%, 200-1 kHz; +/- 3.0%. 					
Technician:		David Higgins	Dat	e:2/12/2018	3
PAGE 1 of 2	TEL	3425 Walden Avenue 888-684-0013 · FAX: 7	ERATION DIVISION Depew, NY 14043 16-685-3886 www.pcb.	com	CAL 96-3601281202 82 5+2
400.11					

	~ Calibratio	n Certificate ~			
Model Number:	3701G2FA50G	-			
Serial Number:	7497				
Description:	DC Accelerometer	-			
Manufacturer:	РСВ	Method: Back-to-Back Comp	parison AT401-12		
Sansitivit	Calibr	ation Data			
Senservit	y & 100 112 00.2 m v/g	(0.14 m v/m/s ⁻)			
	PI	ase Plot			
135.0-		1			
100.0-	······	···· · ···· · · · · · · · · · · · · ·			
50.0- Degrees		·····			
0.0		X			
-50.0-					
-135.0-	<u> </u>		N		
Hz 0.5	1.0 10.0	100.0	1000.0 2000.0		
	Dat	a Points			
Frequency (Hz)	Phase (°)	Frequency (Hz)	Phase (°)		
0.5	-0.2	30	-1.7		
1	-0.1	50	-2.6		
2	-0.1	70	-3.7		
5	-0.3	REF. FREQ.	-5.1		
7	-0.4	200	-9.9		
10	-0.6	450	-22.2		
15	-0.8				
20	-1.1				
		Notes			
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; ±(-1.8% -1-30 Hz; ±(-1.0% -30.01-199 Hz; ±(-1.5% -200-1 kHz; ±(-3.0%)) 					
Technician:	David Higgins プリト	Date:	2/12/2018		
	PCB P				
	3425 Walden Avenue	Depew, NY 14043			
PAGE 2 of 2 ACS-11			CAL96-3601281202.825+2		

	~	Calibration	Certificat	<i>e</i> ~	
Model Num	iber: 3	701G2FA50G	Per ISO	16063-21	
Serial Num	her:	9445			
Description	DC Acc	olerometer			
Man Carl	DC Add				
Manufacture	r:	РСВ	Method: Back-	to-Back Comparison A	AT401-12
		Calibration	Data		
Se	nsitivity @ 100 Hz	59.6 mV/g	Offset Volta	ge (@ 0 g) 0.2 r	mVDC
		(6.08 mV/m/s ²)	Resonant	Frequency 1.70	0 kHz
	Temperature: 71.95	Sensitivit	y Plot		
3.0-		[22 °C)	Relative Hu	imidity: 47%	
2.0-					
dB 00-					
-1.0-					
-2.0-	Martin on alternative and the set of the set	1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (
-3.0-					
Hz 0.	.5 1.0	10.0		100.0	450.0
Freeser		Data Po	ints Des (84)	D (11.)	D (01)
Frequency 0.5	(Hz) Dev. (%)	Frequency (Hz)	Dev. (%)	Frequency (Hz)	Dev. (%)
1	0.0	15	0.2	REF. FREO.	0.0
2	0.2	20	0.2	200	0.4
5	0.2	30	0.2	450	2.8
7	0.2	50	0.2		
Mounting Surface : Accelention Level 'The accelention l (g) = 0.207 x (freq) ²	Calibration Fixture w/Silicone Grease Faster (pk): 1.00 g (9.81 m/s ^o) evel may be limited by shaker displacement . The gravitational constant used for calcula	er: Stud Fixture Orientation: Vertical at low frequencies. If the listed level cannot be obtain ions by the calibration system is: $1g = 9.80665 m/s^3$. Condition d	ed, the calibration system uses the following of Unit	formula to set the vibration amplitude: Accelera	ztion Level
As Found:	In Tolerance				
As Len:	In Tolerance	Notes	5		
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Due to state of art limitations, the test uncertainty ratio is 3:1. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0%, 200 L 109 Hz; +/- 1.5% 					
Technician	:	David Higgins	Dat	e: 2/12/2018	3
PAGE I of 2	TE	PCB P/EZ VIBR 3425 Walden Avenue L: 888-684-0013 FAX: 716-4	DEPEW, NY 14043 685-3886 WWW.pcb.c		CAL96-3601284164 540+1
ACS-11					

	~ Calibratio	on Certificate ~		
Model Number:	3701G2FA50G	-		
Serial Number:	8445	-		
Description:	DC Accelerometer			
Manufacturer:	PCB	Method: Back-to-Back	Comparison AT401-12	
Sanaitivi	Calibr	ation Data		
Sensitivi	ty @ 100 Hz 59.6 m v/g	(6.08 mV/m/s	*)	
	PI	hase Plot		
135.0-				
100.0-		(1. m)		
50.0- Degrees				
0.0-			*	
-50.0-				
-100.0-				
Hz 0.5	1.0	10.0	100.0 450.0	
	Dat	ta Points		
Frequency (Hz)	Phase (°)	Frequency (Hz)	Phase (°)	
0.5	0.1	30	-1.6	
1	-0.2	50	-2.6	
2	-0.1	70	-3.7	
5	-0.2	REF. FREQ.	-5.1	
7	-0.3	200	-9.7	
10	-0.6	450	-22.0	
15	-0.8			
20	-1.1			
		Notes		
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0%, 30.01-199 Hz; +/- 1.5%, 200-1 kHz; +/- 3.0%. 				
Technician:	David Higgins	Date:	2/12/2018	
	PCB P			
PAGE 1 of 1	3425 Walden Avenue TEL: 888-684-0013 · FAX	Depew, NY 14043 X: 716-685-3886 www.pcb.com		
ACS-11			CAL96-3601284164.540+1	

ł

	~ (Calibration	Certificate Per ISO 160	~	
Model Numt	oer: 37	01G2FA50G			
Serial Numb	er:	7152			
Description:	DC Acce	lerometer			
Manufaaturaa					
Manufacturer	·		Method: Back-to-	Back Comparison A	AT401-12
		Calibration	Data		
Sen	sitivity @ 100 Hz	58.9 mV/g	Offset Voltage	(@ 0 g) 0.3 i	mVDC
		(6.01 mV/m/s ²)	Resonant Fre	quency 1.7	0 kHz
	Temperature: 72 °F (2	Sensitivity	Plot Relative Humid	lity: 46 %	
3.0-			OF RECORDER		
2.0-					
dB 0.0-				x	
-1.0-		- () () () () () () () () () (۰	
-2.0-	i				
-3.0-					, ·
Hz 0.5	5 1.0	10.0		100.0	450.0
Farmer		Data Poi	nts	F (11=)	Day (94)
Frequency	(HZ) Dev. (%)	Frequency (HZ)	Dev. (%)	Frequency (HZ)	Dev. (%)
1	0.2	15	0.4	REF FREO	0.0
2	0.4	20	0.3	200	-0.5
5	0.4	30	0.3	450	-2.3
7	0.4	50	0.3		
Mounting Surface: Cr Acceleration Level (p "The acceleration level (g) = 0.207 x (freq) ² .	libration Fixture w/Silicone Grease Fastener (k): 1.00 g (9.81 m/s ²) el may be limited by shaker displacement at 'The gravitational constant used for calculatio	: Stud Fixture Orientation: Vertical low frequencies. If the listed level cannot be obtained ns by the calibration system is: 1 g = 9.80665 m/s ³ . Condition oj	l, the calibration system uses the following forms f Unit	ala to set the vibration amplitude. Acceler	ation Level
As Found:	In Tolerance		- 19-20-20-20-		
As Left:	In Tolerance	Notes	1		
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Due to state of art limitations, the test uncertainty ratio is 3:1. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0%, 30.01-199 Hz; +/- 1.5%, 200-1 kHz; +/- 3.0%. 					
Technician:		David Higgins	Date:	2/12/2018	3
PAGE 1 of 2	TEL	3425 Walden Avenue 888-684-0013 FAX: 716-60	DEPEW, NY 14043 85-3886 WWW.pcb.com		CAL%-3601280273.370+1
ACS-11				1 1111	

	~ Calibratio	on Certificate ~			
Model Number:	3701G2FA50G	-			
Serial Number:	7152				
Description:	DC Accelerometer	_			
Manufacturer:	РСВ	Method: Back-to-Back C	omparison AT401-12		
	Calib	action Data			
Sensitivi	ty @ 100 Hz 58.9 mV/g	(6.01 mV/m/s ²)			
	P	hase Plot			
120.0-					
50.0-					
Degrees					
5.5		1			
-50.0-					
-100.0- -120.0-					
Hz 0.5	1.0 10.0	100.0	1000.0 2000.0		
	Da	ta Points			
Frequency (Hz)Phase (°)Frequency (Hz)Phase (°)					
0.5	0.8	30	-2.2		
1	-0.0	50	-3.5		
2	-0.2	70	-5.0		
5	-0.4	REF. FREQ.	-7.0		
7	-0.5	200	-13.4		
10	-0.8	450	-29.6		
15	-1.1				
20	-1.5				
		Notes			
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; ±(-1.8% 1-30 Hz; ±(-1.0% 30.01-199 Hz; ±(-1.5% 200-1 kHz; ±(-3.0%) 					
Technician:	David Higgins 5 9-	Date:	2/12/2018		
	PCB P	EZOTRONICS			
	3425 Walden Avenue TEL: 888-684-0013 . FA	Depew, NY 14043 X: 716-685-3886 www.nch.com			
PAGE 2 of 2 ACS-11			CAL96-3601280273.370+1		

			~ (Calibratio	n C	ertifica	ite ~			
Model Number:			3701G2FA50G			Per I	SO 16063-21			
Serial Number:			7499							
Description:			DC Accelerometer							
			DC Accelerometer							
wanutacturer:			ł	РСВ			k-to-Back Compar	rison AT401-12	2	
				Calibra	tion Da	ta				
Sensitivity @ 100 Hz 58.8 mV/g Offset Voltage (@ 0 g) 0.							0.3 mVDC			
				(5.99 mV/m/s ²)		Resonant Frequency 1.		1.70 kHz		
				Sensi	tivity Pl	ot				
	Temperature: 71 °F (22 °C) Relative Humidity: 47 %									
	2.0-	····· ·· ·· ·· ·				1.1.1		1011 IS		
	1.0-	~					l			
dB	0.0-									
	-1.0-				*****			1		
	-2.0									
11-	-3.0-1-0.5	1.	0	10	0.0	-, , , ,	100.0	450.0	0	
HZ				Data	a Points					
Frequency (Hz)	Dev. (%)	Frequency ((Hz)	Dev. (%)	Frequenc	y (Hz) Dev. ((%)	
	0.5		-0.5	10		0.1	70	0.1	1	
	1		0.1	15		0.2	REF. FI	REQ. 0.0	0	
2			0.1	20		0.1	200) 0.2	2	
5			0.2	30		0.1	450) 1.9	9	
	/		0.2	50		0.1				
Mountin Accelere 'The acc (g) = 0.2	ng Surface: Cal ation Level (pk celeration leve 207 x (froq) ² .	ibration Fixture w/S)': 1.00 g (9.81 m/s :1 may be limited b The gravitational c	ilicone Grease Fastener 7) y shaker displacement at onstant used for calculatio	Stud Fixture Orientation: Vertical low frequencies. If the listed level cannot b ns by the calibration system is; 1 g = 9.80665 Conditi	e obtained, the c m/s ² .	alibration system uses the follow	ving formula to set the vibration an	uplitude: Acceleration Level		
As F	ound:	In Toler	ance						ć	
As L	eπ:	In Toler	ance	Λ	Intes				8	
1. Ca 2. Th 3. Ca 4. Se 5. Do cove 30.0	alibratic nis certi alibratic e Manu ue to sta rage fac 1-199 F	on is traces ficate shalon is perfo ifacturer's ate of art 1 ctor of 2) f	able to one or Il not be repro rmed in comp Specification imitations, the for frequency 3% 200-1 kH	more of the following; oduced, except in full, w bliance with ISO 10012. Sheet for a detailed lis e test uncertainty ratio i ranges tested during ca	PTB 100 vithout w -1, ANSI ting of po is 3:1. M libration	65, PTB 10066 a ritten approval fr Z540.3 and ISO erformance specific easurement unce are as follows: 0.	nd NIST 683/2834 om PCB Piezotron 17025. fications. rtainty (95% confid 5-0.99 Hz; +/- 1.8	198. ics, Inc. dence level with %, 1-30 Hz; +/- 1.0	0%,	
Tech	nician:		., .,	David Higgins DAL		D	ate:	2/12/2018		
						PONICS N DMISION prew, NY 14043		ur 1 Ar AV 10		
	2		TEL:	888-684-0013 · FAX:	716-685-3	886 · www.pc	b.com	CAL96-3601283	83381.6	

~ Calibration Certificate ~												
Model Number:	3701G2FA50G		61150 16063-21									
Serial Number:	7499											
Description:	DC Accelerometer											
Manufacturer:	РСВ	Method:	Back-to-Back Comparison	AT401-12								
	C	alibration Data										
Sensitivity @ 100 Hz 58.8 mV/g (5.99 mV/m/s ²)												
	a escru		220178/049949499934424409231463369 49 94									
Phase Plot												
135.0-												
50.0-												
Degrees												
-50.0-				\downarrow								
-100.0												
-135.0-{ Hz ^{0.5}	1.0 10.0	100	0.0	1000.0 2000.0								
Data Points												
Frequency (Hz) Phase (°) Frequency (Hz) Phase (°)												
0.5	-0.7		30	-1.7								
1	-0.1		50	-2.7								
2	-0.0		70	-3.8								
5	-0.4	RE	F. FREQ.	-5.4								
7	-0.4		200	-10.4								
10	-0.6		450	-23.1								
15	-0.9											
20	-1.1											
		Notes										
 Calibration is traceable to one or more of the following; PTB 10065, PTB 10066 and NIST 683/283498. This certificate shall not be reproduced, except in full, without written approval from PCB Piezotronics, Inc. Calibration is performed in compliance with ISO 10012-1, ANSI Z540.3 and ISO 17025. See Manufacturer's Specification Sheet for a detailed listing of performance specifications. Measurement uncertainty (95% confidence level with coverage factor of 2) for frequency ranges tested during calibration are as follows: 0.5-0.99 Hz; +/- 1.8%, 1-30 Hz; +/- 1.0%, 30.01-199 Hz; +/- 1.5%, 200-1 kHz; +/- 3.0%. 												
Technician:	David Higgins	BAF	Date: 2/12/2	2018								
WERATION DIVISION												
PAGE 2 of 2	TEL: 888-684-0013 ·	FAX: 716-685-3886 · www	v.pcb.com	CAL96-3601283381.677+1								