Applied Foundation Testing

For: Mr. Dan Hunter

A.H. Beck Foundation Company, Inc.

AHBEC SINCE 1932
FOUNDATION CO. Inc.

5123 Blanco Road San Antonio, Texas 78216 dan.hunter@ahbeck.com June 14, 2018

Revised: June 21, 2018

Final Report of AFT-Cell
Bi-Directional Static Load Testing
Test Shaft

I-10 Mobile River Bridge Mobile, Alabama AFT Project No. 518009

Authored By:

Michael K. Muchard, P.E.

Principal Geotechnical Engineer

Jordan Nelson, E.I. Mechanical Engineer

Reviewed By:

Donald T. Robertson, P.E.Principal Geotechnical Engineer
Alabama License No.: 22873

REVISION: Removed typographical error on Page 1 - "Brief" is misspelled in the "Introduction and Brief Summary" Title

INTRODUCTION AND SUMMARY

This report is provided to summarize the results of bi-directional static load testing of a 72 inch diameter test drilled shaft as part of a pre-bid phase load test contract for the new Interstate 10 Mobile River Bridge Project in Mobile County, Alabama. The load test program consisted of installation and testing of one drilled shaft, and 11 driven piles. Foundation types include a 72" diameter drilled shaft, HP 14 x 89 piles, 18" PPC square piles, a 60" diameter steel open-ended pipe pile, 54" diameter PPC cylindrical piles, and a 30" PPC square pile.

The test shaft had a design diameter of 72-inches and was constructed with a total overall length of 180 feet. Please refer to the project source documents for a site plan of the actual location of the test shaft. This report only contains the analysis and results of the bi-directional load testing for the referenced test shaft. Results of all other testing (lateral Statnamic load testing, CSL, etc.) performed on the test shaft are provided under separate covers.

A.H. Beck was the drilled shaft contractor responsible for the installation of the test shaft and supplied field support to carry out the axial load testing. Applied Foundation Testing (AFT) was the specialty engineering firm performing the testing. Field instrumentation and set up of the bidirectional load test was led by AFT Technician Mr. Jason Frederick with assistance from other AFT staff. Data acquisition during testing was performed by Mr. Joseph Bailey, P.E, and Andrew Best. Katherine Shaw and Jordan Nelson performed the data reduction and reporting. Mr. Donald T. Robertson, P.E is the overall project manager and responsible engineer for the project and provided quality assurance oversight for the data analysis and reporting.

GENERALIZED SOIL CONDITIONS

A soil test boring (Boring No. MB-1) was performed at the shaft location and is included in <u>Appendix B</u>.

In general, the overburden soils at this location consisted of compacted gravel from original ground surface elevation to approximately +3.0 feet. From elevation +3.0 feet to -83.0 there were alternating layers of poorly graded sand/silt and very dense sandy silt. Following this was a layer of fat clay from approximately -83 feet to -98 feet. Below this elevation poorly graded sand sand/silt combinations were present to an approximate elevation of -123.0 feet. Another fat clay layer was present from elevation -128.0 feet to -132.0 feet. Poorly graded sand/silt was present until shaft termination at -170 feet.

These descriptions of soil conditions represent a summary of conditions as indicated in the provided materials and is included only to assist in evaluation of the load test data. For details regarding the soil conditions at the test site and elsewhere, the reader should reference the project source documents.

FOUNDATION DESCRIPTION

The test shaft had a design diameter of 72-inches and was constructed with a total overall length of 180 feet. The construction method can generally be described as follows. A permanent steel casing was used in the upper 57 feet with a 78-inch O.D. / 77-inch I.D., ½-inch wall thickness. The test shaft was excavated under polymer slurry drilling fluid using 72 inch diameter tools including a soil auger, digging bucket, and clean out bucket. Polymer slurry property tests consisting of viscosity, density, PH, and sand content were performed at various times during the construction process reported elsewhere. Once achieving the required tip elevation, the shaft bottom was cleaned using a clean out bucket and a complete fluid column exchange via a submersible pump at the shaft bottom. Subsequently it was checked for bottom firmness with a Mini-SID shaft bottom video inspection device. The bottom cleanliness met the specifications and was approved for concrete placement.

The reinforcement cage was constructed with two bi-directional load testing assemblies, the upper cell assembly was located at approximately elevation -118.2 feet and the lower cell assembly was located at approximately -161.6 feet in elevation. Both cell assemblies were exactly the same and consisted of four cells. Each cell assembly was capable of exerting a force of 4,000 kips.

Longitudinal shaft reinforcement for the test shaft consisted of eighteen (18) pairs of #11 bars (36 bars total) from the top of shaft to elevation -118.2 feet, which corresponds to the location of the upper cell assembly. A lighter cage was used for the portion of shaft between the two load cell assemblies consisting of eight (8) #11 bars from approximate elevation -118.2 feet to -161.6 feet, which is the location of the lower cell assembly. All longitudinal shaft reinforcement was surrounded by #7 spiral shear hoops. Details can be found in the plans and rebar shop drawings available from others.

The reinforcement cage also contained eight (8) steel CSL access tubes for integrity testing. Prior to the reinforcement cage being lowered into the excavation AFT tied four (4) levels of four embedded "sister bar" strain gages to the reinforcement cage at the locations shown in the attached schematic drawing.

The reinforcement cage was inserted into the excavation in two parts and the sections were joined over the excavation. Each section was temporarily supported from the permanent casing while splicing. A pump and 10-inch tremie pipe was used to place concrete. The tremie was installed to the bottom of shaft through the AFT-Cell assembly via funnels made of steel angle pieces. The tremie seal was obtained with a traveling foam plug. The total placed concrete volume is reported as 212 cubic yards, which is greater than the theoretical volume of 197 yds. The concrete was pumped until sound concrete was observed at the top of the drilled shaft (EL. *10.2 feet).

AFT was not under contract to document the test shaft installation, but we have provided this summary based on our onsite observations and information as provided by the Contractor and the Owner's representatives. For more information on the test shaft construction, the reader should reference the project source documents.

TEST SETUP AND INSTRUMENTATION

The bi-directional static load test method loads the shaft in two directions by hydraulically pressurizing an embedded jack (AFT-Cell) assembly within the shaft. Pressurizing the jack assembly simultaneously loads the shaft below the AFT-Cells that resists downward movement and loads the shaft above, which resists upward movement. The load is determined by relating the applied hydraulic pressure to the jack calibration. A description of the instrumentation used during the test is given below. Calibration data is provided in <u>Appendix C</u>. A summary of instrument locations and shaft properties is provided in <u>Appendix A</u>. Various key dates are summarized in Table 1.

Table 1. Load Testing Key Dates Summary

Test Location	Date Instrumented	Date Construction Completed	Load Test Date		
Test Shaft	March 19 to 23, 2018	March 24, 2018	April 11, 2018		

- AFT-Cell™ The AFT-Cell is manufactured by Applied Foundation Testing in the USA. The load was determined using the NIST traceable jack calibrations attached in Appendix C to relate applied load and hydraulic pressure. Calibrations of the jacks meet the linearity and accuracy requirements given in ASTM D8169. Calibrated digital pressure gauges and an electronic pressure transducer monitored the applied pressure during testing. The pressure transducer was used for analysis and the digital gauge was used for visual reference and redundancy for the transducer.
- Expansion of AFT-Cell was measured directly by four LVWDTs (Linear Vibrating Wire Displacement Transducers, Geokon Model 4450) attached to the jack assembly and spaced approximately equal around the circumference of the bearing plates. The LVWDT armature was fixed to the bottom bearing plate and the LVWDT body was rigidly fixed to the top bearing plate. The LVWDTs have a travel of 9 inches and were read to a 0.005-inch precision. The LVWDT assemblies functioned reliably.
- Shaft Elastic Compression between the top of shaft and the top of the upper jack assembly was measured with two telltale assemblies consisting of a ½ inch pipe casing with an inner ¼ inch steel rod. The compression telltale assembly was monitored by a LVDT attached to the top of shaft. The LVDT indicator has a travel of at least 2 inches and is read to a 0.0001-inch precision. The stem of the indicator was axially aligned and fixed to the telltale rod.
- <u>Upward Top of Shaft Movement</u> was measured using a pair of automated digital survey levels (Leica, Model DNA 03). Both survey levels monitored an INVAR barcode staff rigidly mounted to the top of shaft from a clear distance greater than 5D from the edge of the test shaft. The survey-level / INVAR rod reference system has a 0.001-inch precision.
- <u>Strain Gages</u> Strain measurements were obtained using "sister bar" type strain gages manufactured by Applied Foundation Testing (Micro-Measurements gage type CEA-06-125UW-350). The sister bar gages have an accuracy of 1.0 με. The lead cabling was a multiconductor with shielded wires with a highly robust extrusion molded casing. Four levels of

gages with each level containing four gages spaced at 90 degrees around the rebar cage. Gage levels are shown in the drawing in <u>Appendix A</u>.

 <u>Data Acquisition System</u> – a National Instruments CompactDAQ[™] was used to monitor all the instrumentation. A laptop computer controlled the data acquisition system. Instrumentation readings were taken at 5-second intervals during the test. The system provides two levels of backup for all recorded data. In addition, manual records were maintained during the test as a backup.

TEST PROCEDURES

The bi-directional static load test was conducted generally following ASTM D8169 "Standard Test Methods for Deep Foundations Under Static Axial Compressive Load", "Procedure A – Quick Test". Load increments of 5 percent of the maximum cell capacity were targeted for approximate 8-minute holds.

<u>General</u>: The loads applied by the embedded jack act simultaneously on the shaft above and below its location. The load acting upward is assumed to be zero until the buoyant weight of the shaft above is overcome; this is consistent with current industry analysis practice. The *net load* is therefore the *gross load* minus the buoyant weight of the shaft above the AFT-Cell. For Stage 1, the buoyant weight above the lower cell level was calculated as 451 kips. For Stages 2 and 3, the buoyant weight above the upper cell was calculated to be 347 kips.

Stage 1 as shown in <u>Figure 1</u>, the bottom level of jacks was pressurized to a maximum unidirectional applied load of 5,455 kips with 0.66 inches of upward cell displacement and 4.21 inches of downward cell displacement. The buoyant weight of the shaft for Stage 1 is comprised of the upper and middle sections, and is approximately 451 kips. The maximum upward load after correcting for buoyant weight was 5,004 kips. Stage 1 was concluded when downward displacement exceeded 5% of the shaft diameter. Individual plots of load and displacement vs time are given in <u>Figures 2 and 3</u> for Stage 1.

Stage 2 involved pressurizing the upper level of cells with the bottom level of cells being open and vented so in theory there would be no resistance from the portion of shaft below the lower cells. However, the data indicated. The maximum load obtained during Stage 2 was 2,840 kips with a maximum downward cell displacement of 1.62 inches, and a maximum upward cell displacement of 0.28 inches. The maximum upward load after correcting for buoyant weight was 2,493 kips, as shown in Figure 4. It was desired to achieve greater shaft upward displacement so the lower cells were hydraulically locked off and jacking of the upper cells was continued in what is named as Stage 3.

Stage 3 involved pressurizing the upper level of cells with the bottom level of cells being hydraulically locked to provide additional reaction needed to carry the test load higher. This procedure was effective in achieving the additional desired upward movement of the shaft. The eventual maximum load was 3,865 kips, with a maximum upward cell displacement of 2.22 inches, and a maximum downward cell displacement of 2.14 inches. The maximum upward load after correcting for buoyant weight was 3,518 kips. Stage 3 was concluded when no further upward resistance could be gained.

For the purposes of presentation, Stage 2 and 3 are shown on the same plots. Load and displacement vs time are given in <u>Figures 5 and 6</u> for Stage 2/3.

By summing the maximum loads from Stages 1 through 3 and subtracting the respective buoyant shaft weights, an equivalent shaft resistance of approximately 11,600 kips can be expected at a shaft head displacement of slightly above 3 inches.

TEST RESULTS AND ANALYSIS

Loads were applied and displacements were measured as discussed above. Strains in the shaft were also measured at each level during the loadings. The measured strains at each strain gage level were processed and then averaged and given in Figures 7, 9, and 10. Loads at each gage level were calculated by multiplying the average strain by the respective cross-sectional area and composite modulus of elasticity (stiffness). These plots are shown in Figures 8, 11, and 12. The load distribution is also plotted vs elevation in Figures 13 and 14. A composite shaft modulus was determined by weighting the individual modulus of the steel and concrete by their respective cross-sectional areas. In this way, the concrete modulus is calculated using ACI 318 formula: $E_c = 33Wc^{1.5} \times \sqrt{f'c}$ with an assumed concrete unit weight of W_c of 150 pcf and the closest average concrete strength at the time of testing. An f'^c of 6,468 psi was obtained from laboratory tests by others. Shaft stiffness values calculated in this way were used in the load transfer calculations.

Unit side shear values were then determined by subtracting the calculated loads at each strain gage level and dividing by the respective segment surface area. Segmental unit side shear values are presented in the form of a t-z curve or soil response curve. In the t-z curve, the displacement shown is at the midpoint of the segment. The midpoint displacement is calculated by subtracting the cumulative elastic shortening from the length of each foundation segment using the measured AFT-Cell displacement as the boundary value.

End Bearing: The intent of Stage 1 loading was to mobilize the base resistance by reacting against the full side resistance of the shaft above the bottom cells. Test data show a maximum load of 5,455 kips produced a total downward cell movement of 4.21 inches. After subtraction of the side resistance over the bottom 8 feet of the shaft, which was assumed to be 2.66 ksf, a load of 5,054 kips was transferred to the shaft base. This subsequent force acting on the cross-section end area of a 72 inch diameter shaft results in a maximum unit base resistance of 178.8 ksf. The displacement at the shaft base is calculated after accounting for the elastic shortening of the bottom 8 feet and together with the unit base resistance discussed above it is plotted in a Qz curve shown in Figure 18.

It is also noted that the end bearing response develops immediately, which is a testament to the good shaft bottom is cleaning techniques used by the contractor.

Stage 1 Upper Shear (shaft top to el -161.6'): The maximum load achieved during Stage 1 was 5,455 kips, measured at the cell with a total upward cell movement of 0.66 inches. After subtracting the buoyant shaft weight above the cells, the maximum upward load was 5,004 kips. Measured top of shaft movement was 0.59 inches. The difference between the shaft top displacement and the upward displacement at the cell location was due to the shaft elastic shortening. The amount of displacement measured at the shaft top is important as it indicates a

large portion of the shaft side resistance was mobilized during Stage 1. The t-z curves for Stage 1 are shown in <u>Figure 15.</u>

Stage 2 and 3 Upper Shear (shaft top to el -118.2'): During Stage 2 the lower cell was left vented, therefore the closure of the lower cell assembly prevented significant load transfer below that depth. The maximum load reached during Stage 2 was 2,840 kips with a maximum downward cell displacement of 1.62 inches, and a maximum upward cell displacement of 0.28 inches. Observed top of shaft movement during this stage was 0.21 inches. With only minimal upward displacement, it was evident that the lower cells had to be hydraulically locked to engage more reaction for further jacking of the upper cells.

Stage 3 involved loading the upper cells with the lower cells locked off. Stage 3 indeed reached a higher load of 3,865 kips and the shaft segment above the cells displaced 2.22 inches upward. The observed top of shaft displacement was 2.14 inches. The t-z curves for Segments 1 through 4 are shown in Figure 16.

Stage 2 and 3 Lower Shear (between el -118.2' and el -161.6'): For the Stage 2 and Stage 3 loading, side shear analysis of the segment of shaft between the two cell levels is complex because the direction of loading was in reverse of Stage 1 loading. This segment of shaft was first displaced upward 0.66 inch during stage 1 then during stages 2 and 3, it was displaced downward 2.14 inches. In the course of all the loadings, this segment went through a reversal in loading directions. The effect of the load reversal can be seen in Figure 17.

We will also point out that although the bottom cells were open and vented during Stage 2, the rate of closure did not match the same rate of expansion of the upper cells. This suggests there was concrete rubble and or soil in the crack plane which prevented frictionless closure of the bottom cells. This must be considered when making interpretations of the Stage 2 data. For this reason we have only plotted the load at gage level 4, as shown in <u>Figure 19</u>.

Included in <u>Table 2</u>, is a summary of unit side shear and base resistance from the three loading cycles. The corresponding t-z curves for are presented in Figures 15, 16 and 17.

Table 2. Load Transfer Summary

Location	Segment Top / Segment Bottom Elevation (feet)	Soil Type	STAGE 1 Maximum Unit Side Shear Resistance (ksf)	STAGE 2/3 Maximum Unit Side Shear Resistance (ksf)
Segment 1	⁺9.88 to ⁻57.6 Feet (Permanent Casing)	Sand w/ gravel	0.53 ↑	0.70 ↑
Segment 2	⁻ 57.6 to ⁻ 77.8 Feet	Sand w/ gravel	2.42 ↑	2.69 ↑
Segment 3	-77.8 to -99.1 Feet	Fat Clay	1.52 ↑	1.81 ↑
Segment 4 and 5 ¹	⁻ 99.1 to ⁻ 135.8 Feet	Silty Sand w/ gravel	2.88 ↑	3.25 ↑ Seg 4 2.76 ↑ Seg 5
	Upper AFT-	-Cell Elevation -12	0.0 Feet	
Segment 6	⁻ 135.8 to ⁻ 162.0 Feet	Sand w/ gravel	2.66 ↑	N/A
	Lower AFT	-Cell Elevation -16	2.0 Feet	
		End Bearing		
Base of Shaft	⁻ 170.0 Feet	Sand w/ gravel	Stage 1 4,842 kips↓ @ 3.6"↓ 5,054 kips↓ @ 4.0"↓	171.3 ksf @ 3.6" (5% of Dia.) 178.8 ksf @ 4.0" Max Mobilized

Notes: 1) For Stage 1 the upper cell is modeled as being part of the adjacent segments. Therefore, values are reported based on a combined segment 4 and 5. Stage 2 has reported values for individual segments 4 and 5.

Equivalent Top Load versus Displacement: An equivalent top load versus displacement curve is presented in Figure 20 based on the AFT-Cell movement data. The method sums the upward and downward forces at equal displacements of each shaft section, therefore it is limited to the lower of the two observed displacements. This figure also shows the displacement corrected for elastic shortening that would occur if the shaft was loaded from the top. For a top loading of 11,600 kips, the corrected data indicates the shaft would have experienced 3 inches of displacement. As the shaft would be expected to develop additional side resistance for the given displacements shown, the overall displacement of the shaft provided in the elasticity corrected curve is an overestimation and can be considered conservative.

Creep Limit: Creep data for all sections of the shaft are shown in Figure 21.

CLOSURE

We want to thank you for the opportunity to be involved in this project. Please do not hesitate to call us if you have any questions regarding the information in this report.

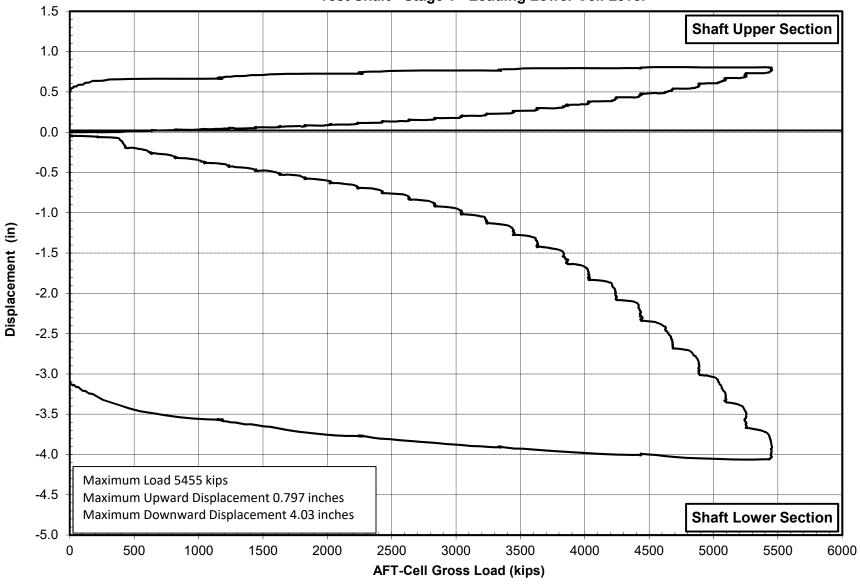
LIMITATIONS

This report presents test measurements made by AFT. Interpretations were made based upon the measurements made by AFT with the latest techniques available and currently accepted standards of care recognized by Geotechnical Engineering professionals. AFT is an independent agency and is not the Geotechnical Engineer of Record. The Geotechnical Engineer of Record should ultimately make final recommendations for foundation design and construction.

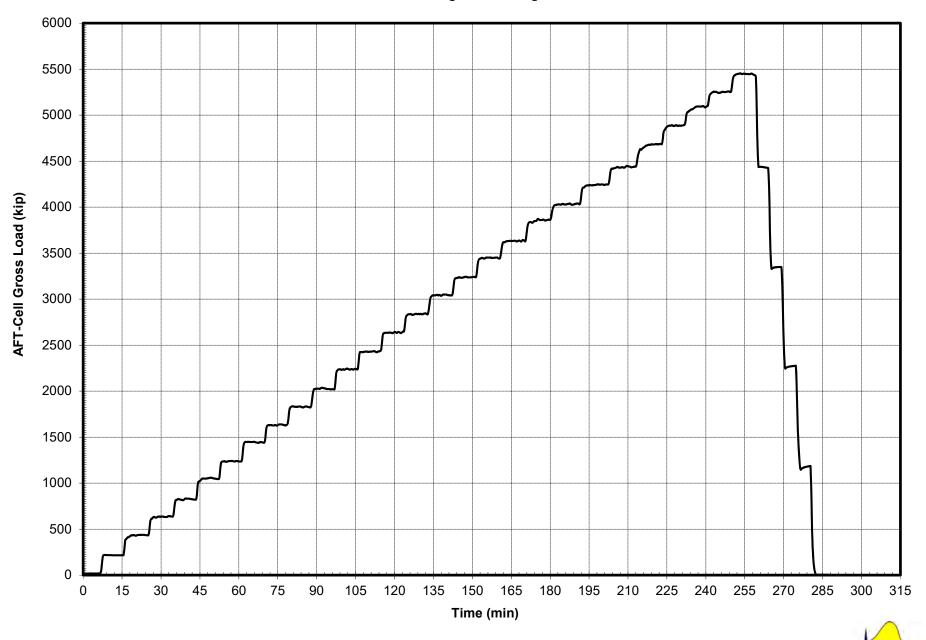
REFERENCES

Lee, Jong-Sub. Park, Yung-Ho. "Equivalent pile load-head settlement curve using a bi-directional pile load test" Elsevier B.V. *Computers and Geotechnics*. Volume 35, Issue 2. March 2008. PP 124-133

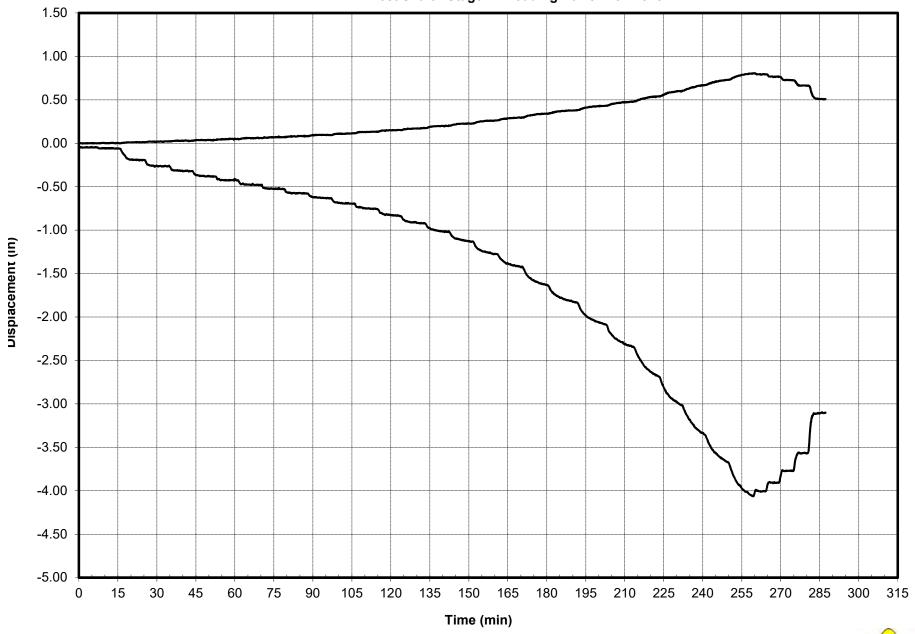
Housel, William S. "Dynamic and Static Resistance of Cohesive Soil." ASTM International. *Papers on Soils, 1959 Meetings.* PP 4-33.

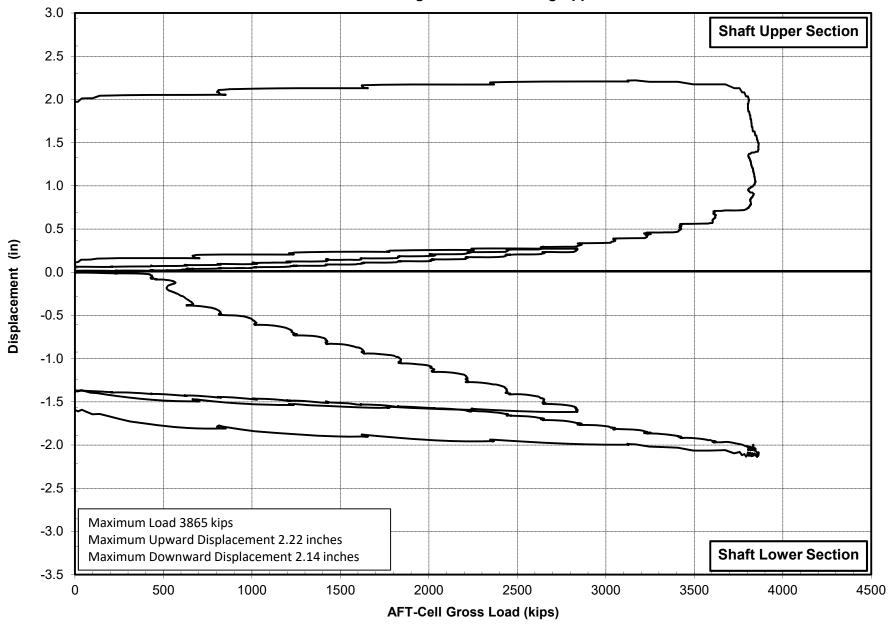

Appendix A

Test Result Figures Input/Analysis Parameters

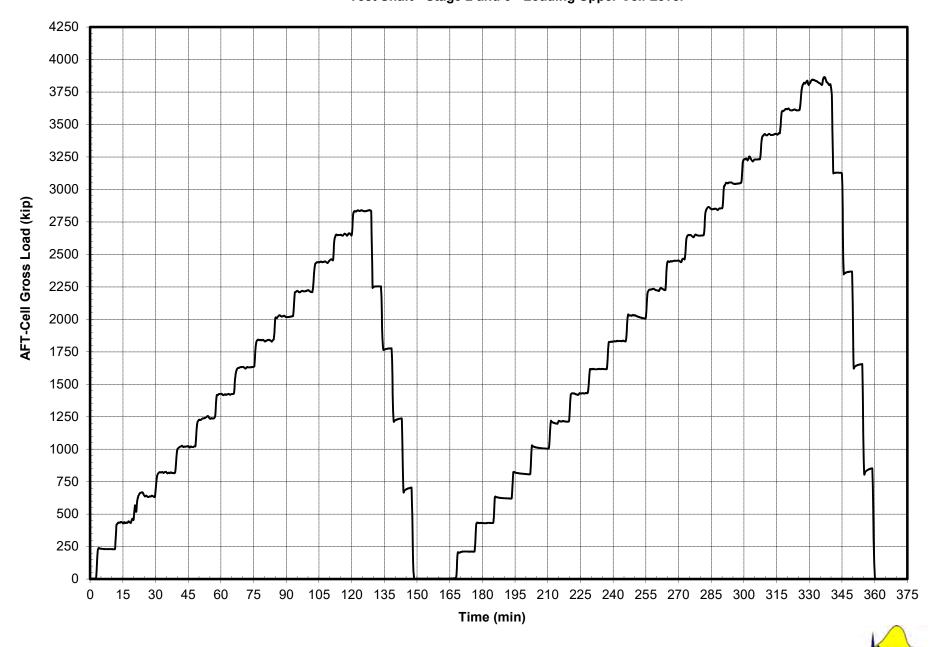

Report of Bi-Directional Load Testing I-10 Mobile River Bridge AFT Project No. 518009

Mobile, Álabama

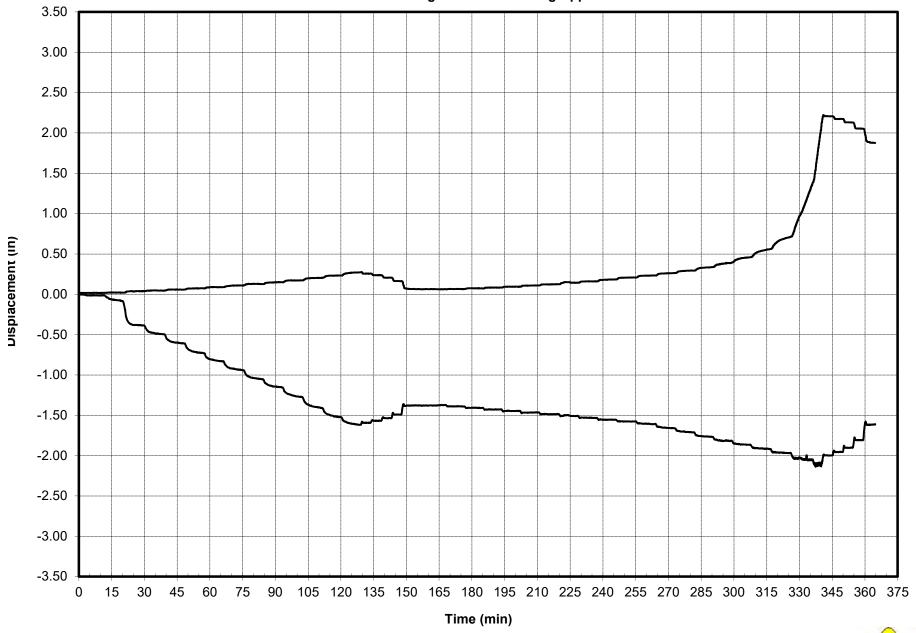

AFT-Cell Gross Load vs Displacement I-10 Mobile River Bridge Test Shaft - Stage 1 - Loading Lower Cell Level

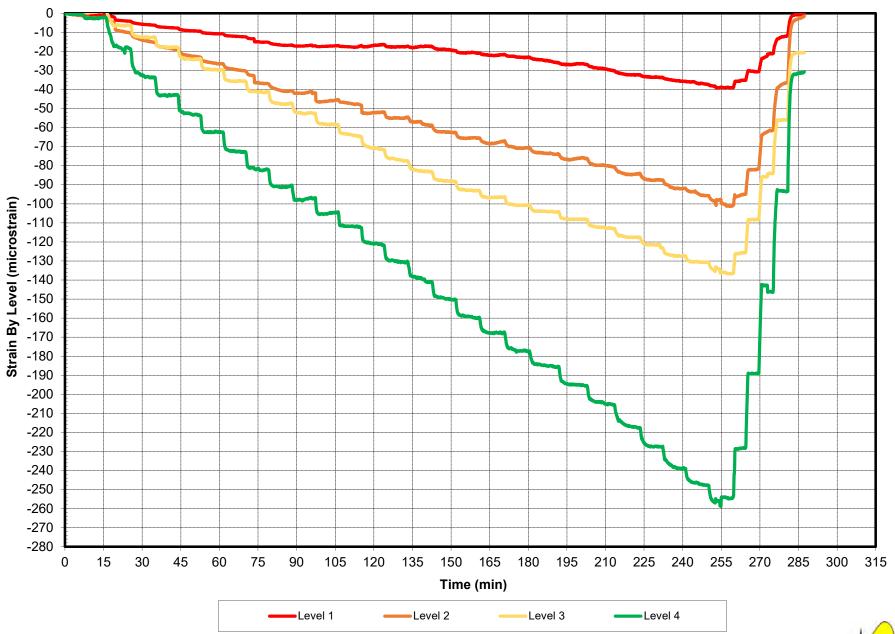

AFT-Cell Load vs Time I-10 Mobile River Bridge Test Shaft - Stage 1 - Loading Lower Cell Level

AFT-Cell Displacement vs Time I-10 Mobile River Bridge Test Shaft - Stage 1 - Loading Lower Cell Level

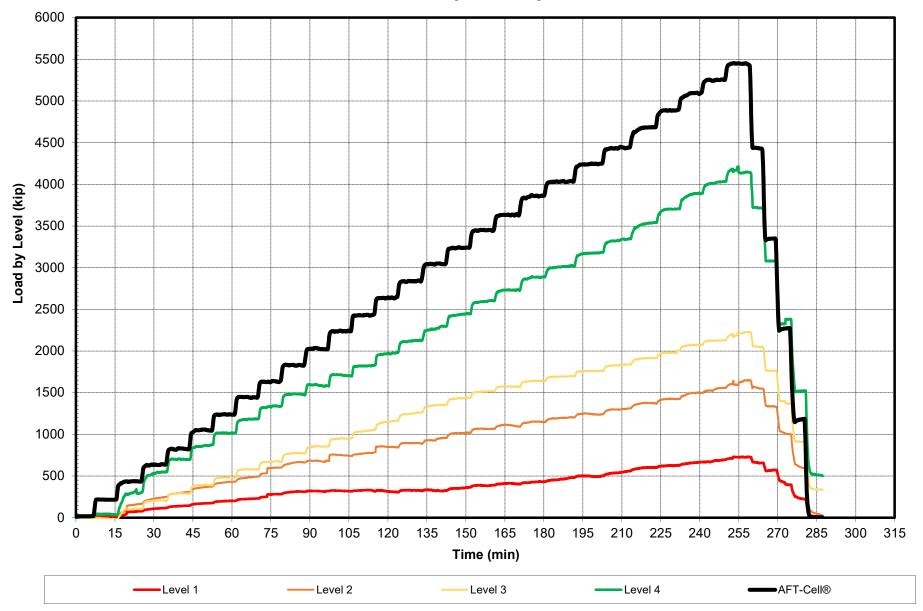


AFT-Cell Gross Load vs Displacement I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

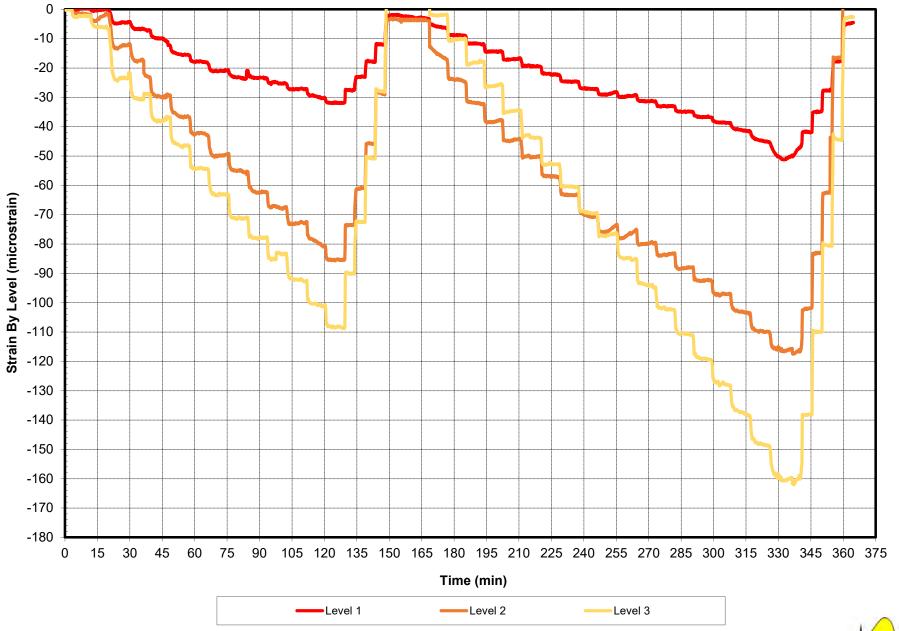



AFT-Cell Load vs Time I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

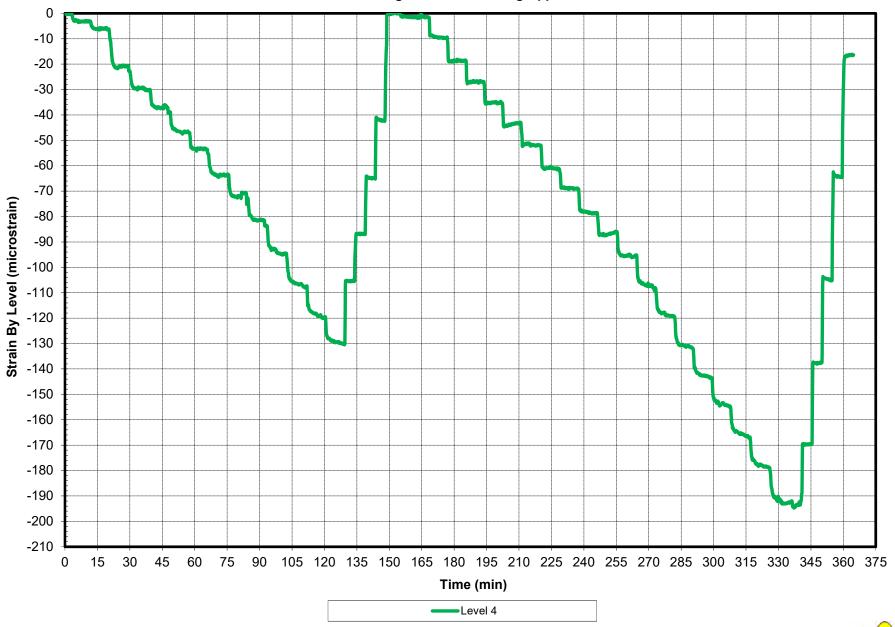
AFT-Cell Displacement vs Time I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level



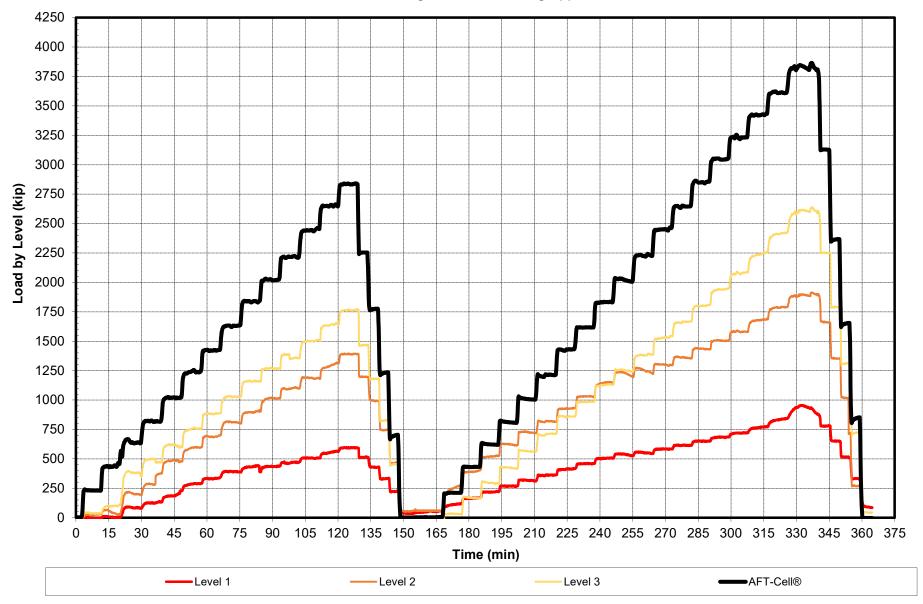
Upper Section Strain vs Time I-10 Mobile River Bridge Test Shaft - Stage 1 - Loading Lower Cell Level



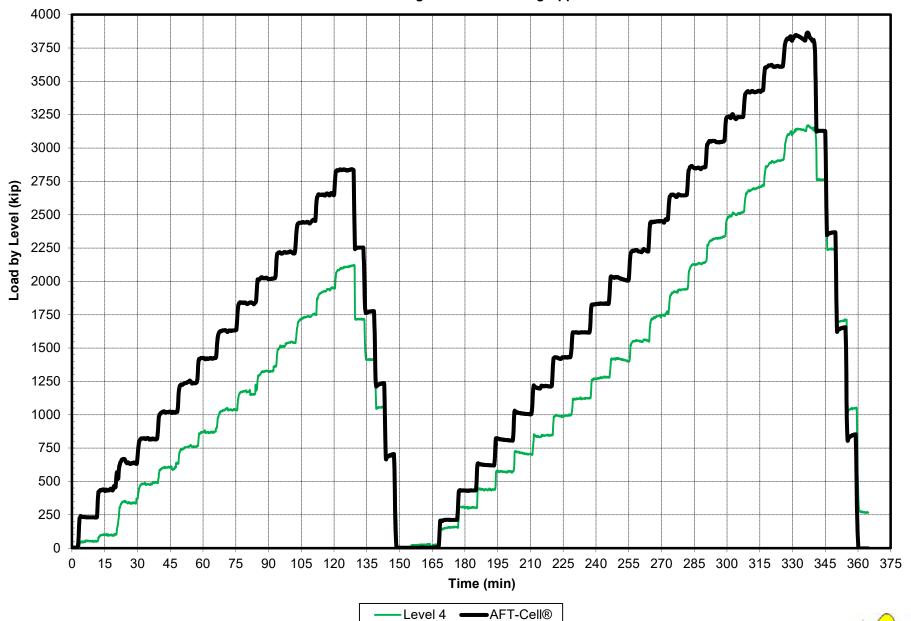
Upper Load Distribution vs Time I-10 Mobile River Bridge Test Shaft - Stage 1 - Loading Lower Cell Level



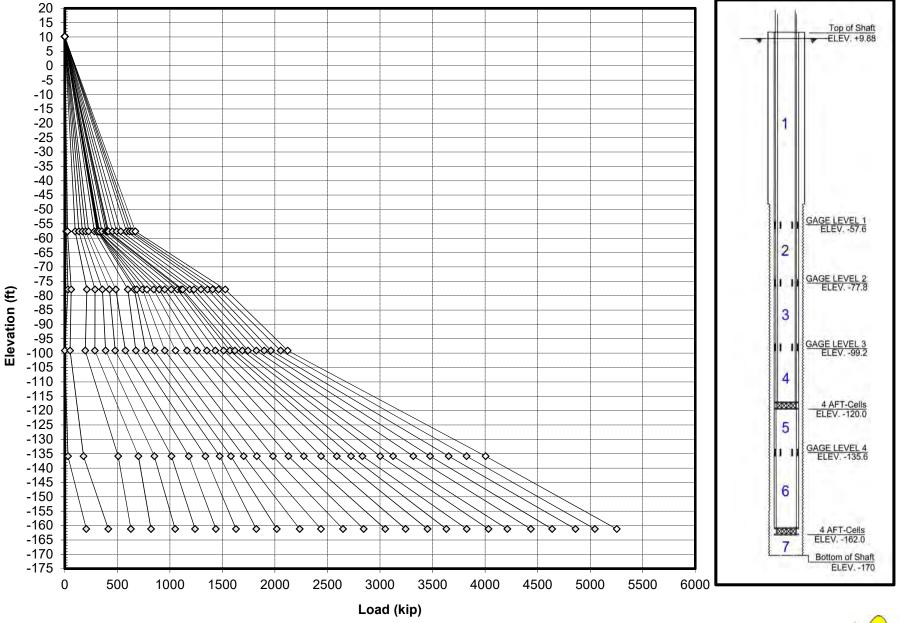
Upper Section Strain vs Time I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level



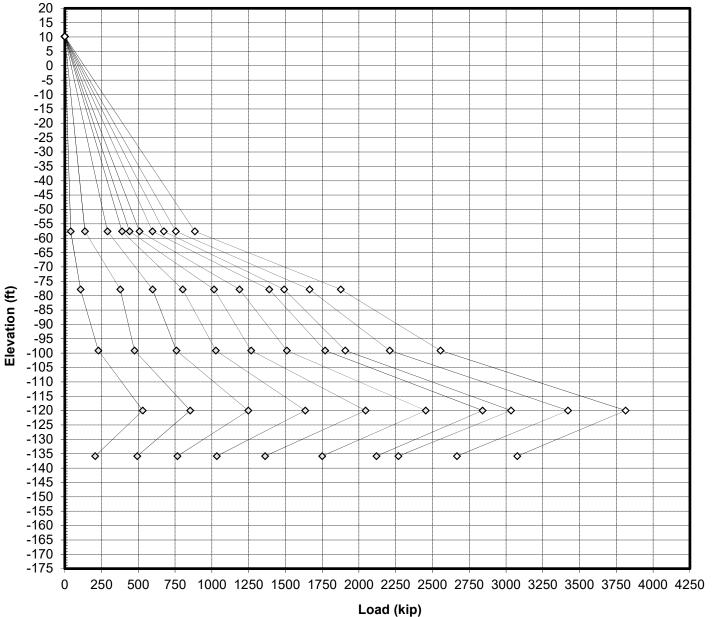
Lower Section Strain vs Time I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

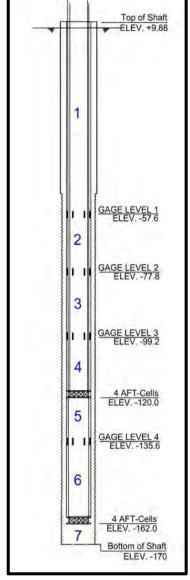


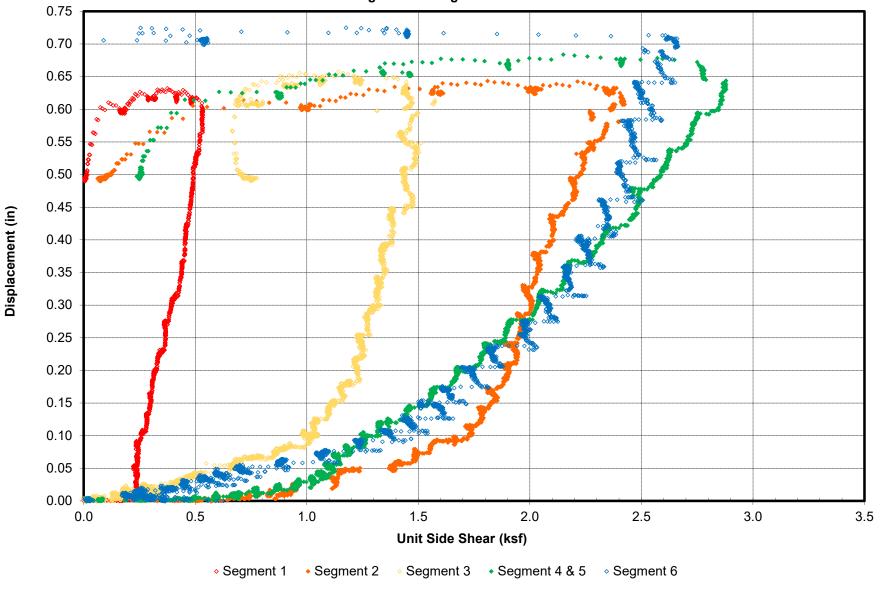
Upper Load Distribution vs Time I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

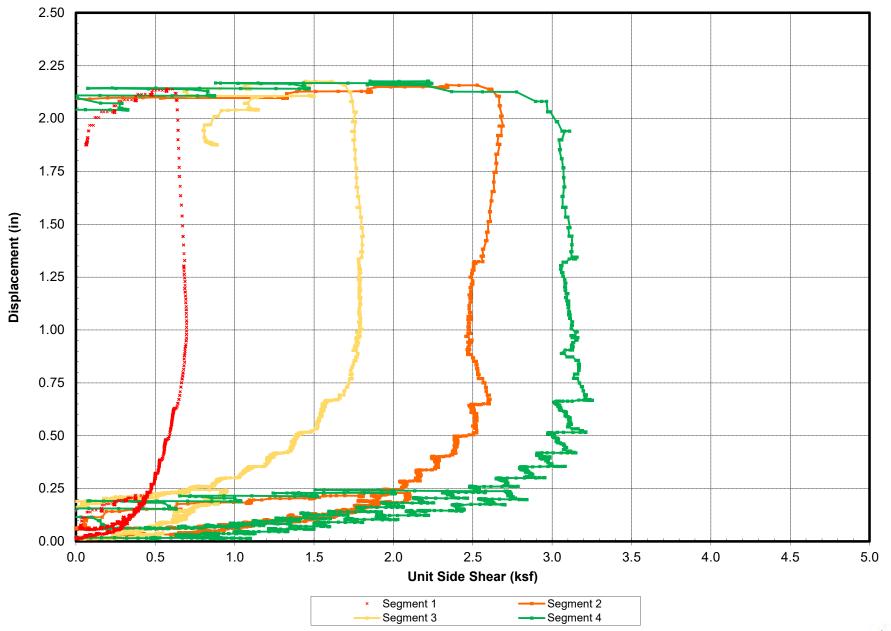


Lower Load Distribution vs Time I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

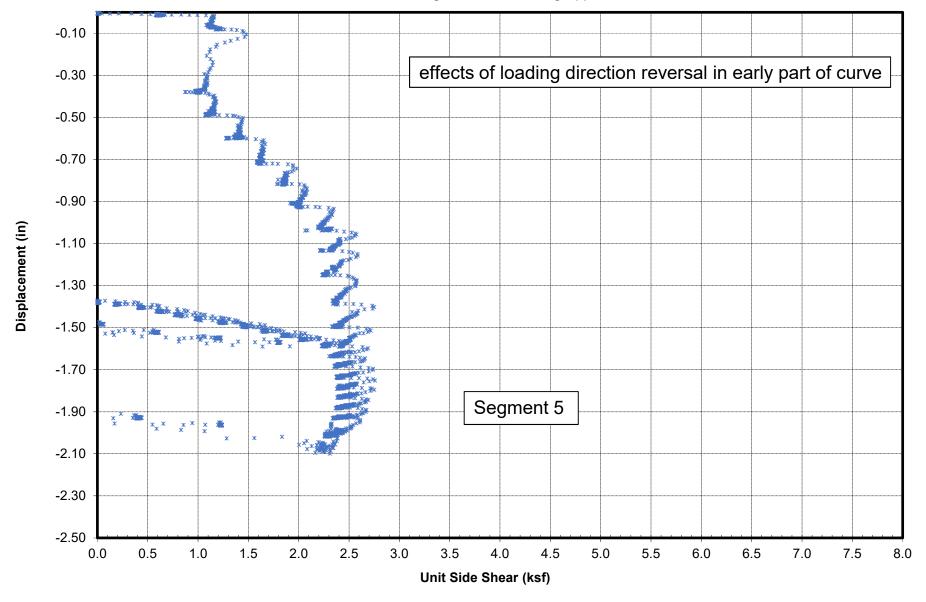



Elevation Load Distribution I-10 Mobile River Bridge Test Shaft - Stage 1 - Loading Lower Cell Level


Elevation Load Distribution I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level



Upper Section Unit Side Shear (τz) I-10 Mobile River Bridge Stage 1 - Loading Lower Cell Level



Upper Section Unit Side Shear (τz) I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

Lower Section Unit Side Shear (τz) I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

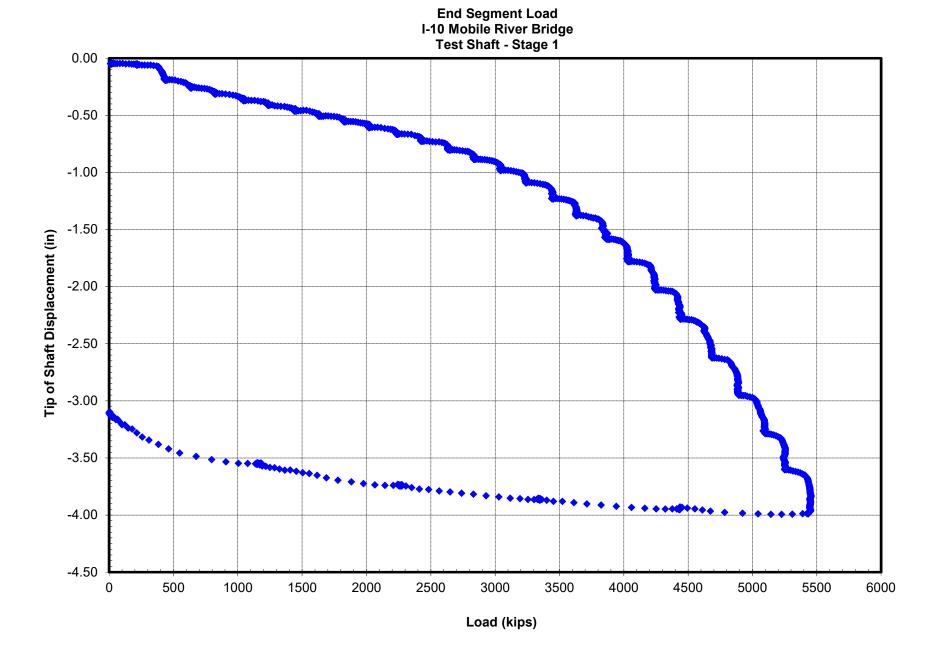
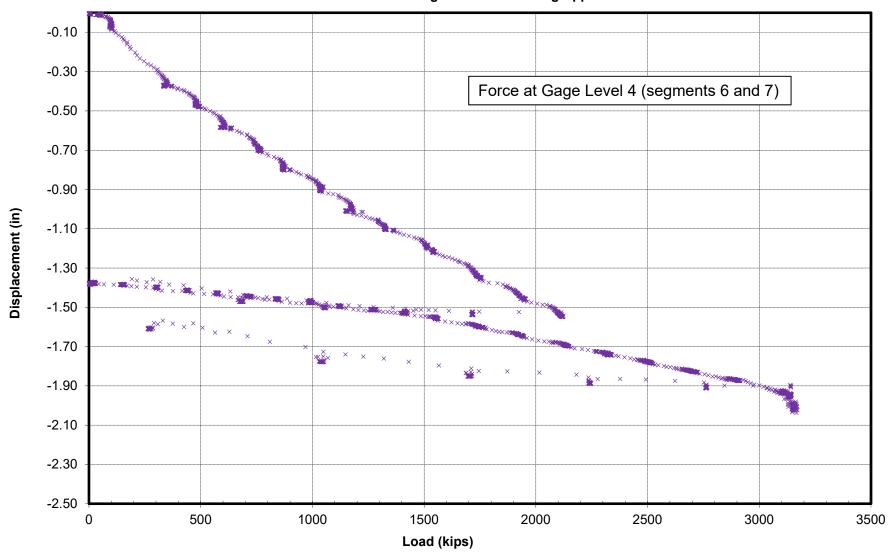
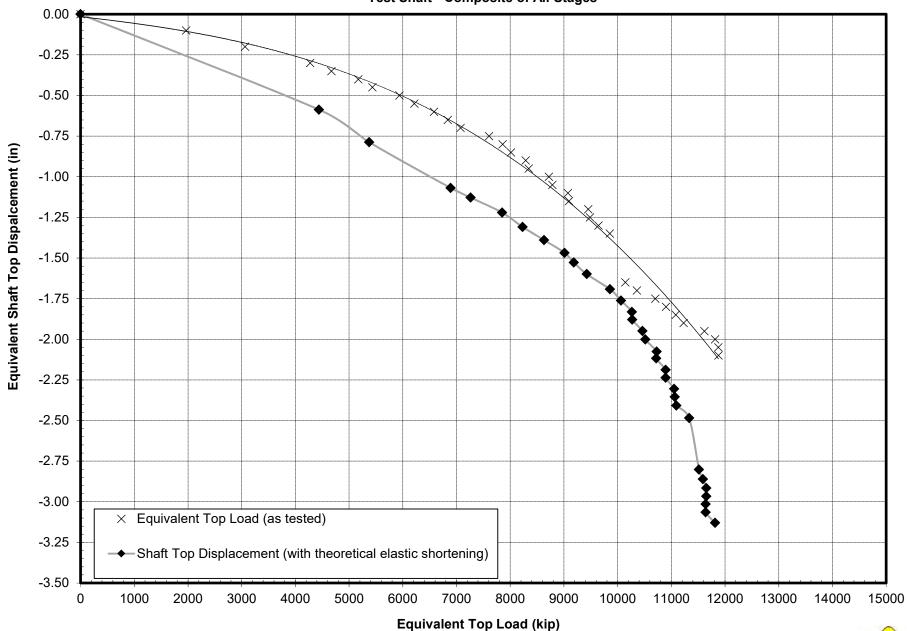
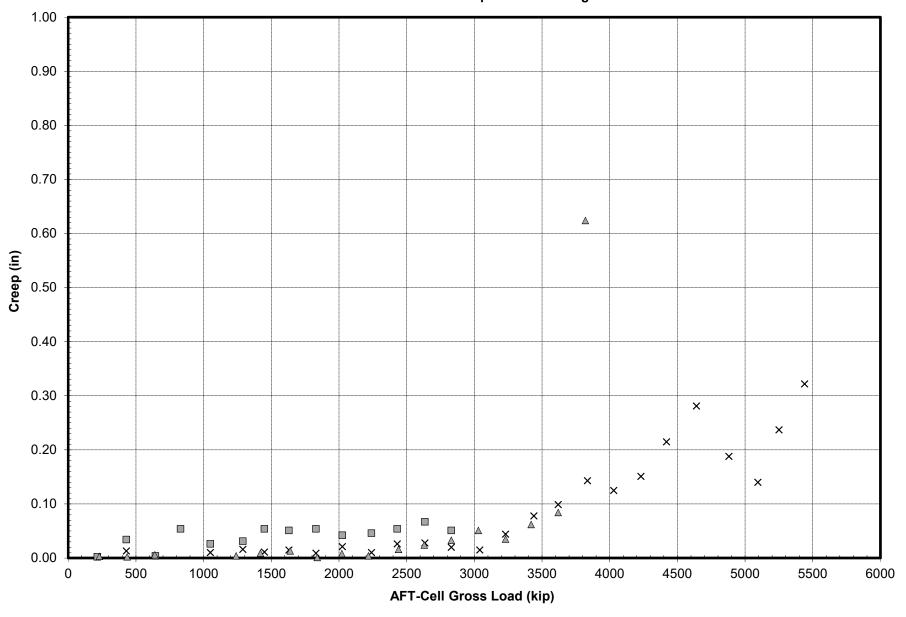




Figure 18


End Segment Load I-10 Over Mobile River Test Shaft - Stage 2 and 3 - Loading Upper Cell Level

Equivalent Shaft Top Load vs Displacement I-10 Over Mobile River Test Shaft - Composite of All Stages

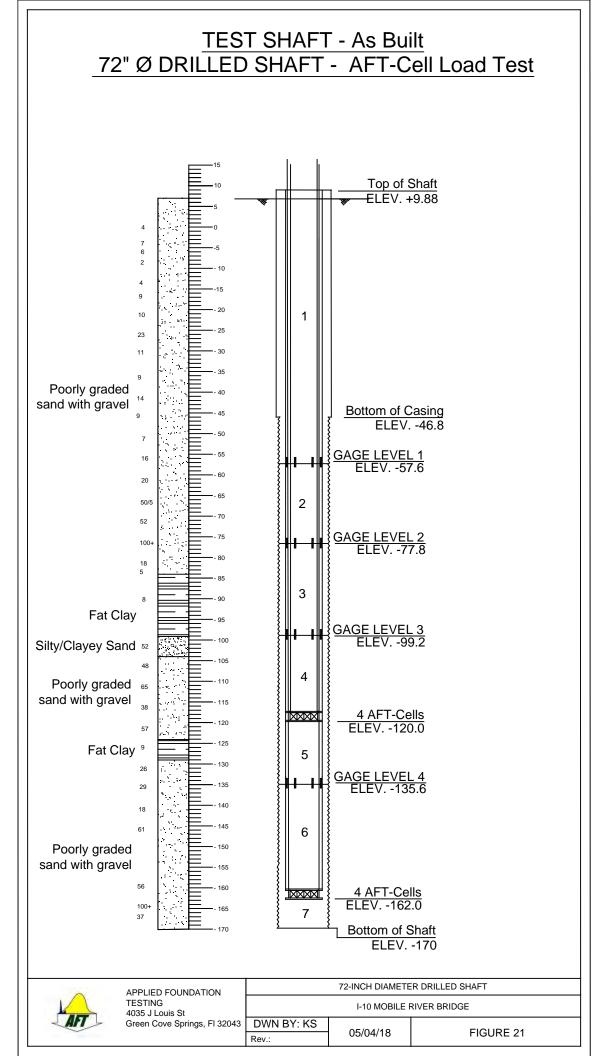
Creep Limit
I-10 Over Mobile River
Test Shaft - Composite of All Stages

AFT

■ Middle Section (Stage 2)

△ Top Section (Stage 2 and 3)

×Bottom Section (Stage 1)



Appendix B

As-Built Test Shaft Schematic Concrete Pour Log Concrete Strength Report Soil Boring Record

Report of Bi-Directional Load Testing I-10 Mobile River Bridge

I-10 Mobile River Bridge AFT Project No. 518009 Mobile, Alabama

Project Number И-1010(341)				County			Area SW Region				
Bridge Station		To Station		Bridge Identification Number							
est Shaft				and							
load Between				ano							
ontractor ordan Pile Driv	ring / A.H. Beck			Inspecto Jay Davi							
ate	Bent No. 8	Lane		Shaft No			Kind of Soil Silty Sand				
23/2018 Diameter of Shat	ft l	I Sha	aft Volume per Lin			Shaft Tir	Elevation				
The second of th	ing (-46.8 EL)		7 CY / 1.198 C			-170	Liotation				
Load	Quantity	Slump	Pouri	ng Time	- 1	Concrete	Tremie	Cylinder			
Number	(Cu. Yds.)	(in.)	Start	Finis	h	Elevation	Tip Elevation	Number			
1	8	7.5	2:22 PM	2:28 F	PM	-165.3	-165				
2	8		2:28 PM	2:32 F	PM	-157.1	-165				
3	8		2:32 PM	2:51 F	PM	-150.6	-165				
4	8	9.5	2:52 PM	3:03 F	PM	-143.5	-160				
5	8		3:03 PM	3:09 F	PM	-138.6	-155				
6	8		3:10 PM	3:16 F	PM	-131.0	-150				
7	8		3:19 PM	3:35 F	PM	-124.2	-140				
8	8		3:35 PM	3:40 F	PM	-117.8	-135				
9	8	9.25	3:40 PM	3:45 F	PM	-109.7	-130				
10	8		3:45 PM	3:50 F	PM	-102.8	-120				
11	8) (3:50 PM	3:55 F	PM	-93.8	-115				
12	8		3:55 PM	4:00 F	PM	-86.5	-110				
13	8	9.5	4:09 PM	4:13 F	PM	-79.3	-105				
14	8		4:13 PM	4:19 F	PM	-71.8	-90				
15	8		4:19 PM	4:28 F	PM	-63.1	-80				
16	8		4:25 PM	4:35 F	PM	-56.8	-70				
17	8		4:35 PM	4:39 F	PM	-48.8	-60				
18	8		4:39 PM	4:52 F	M	-42.1	-55				
19	8		4:52 PM	4:56 F	PM	-35.7	-45				
Shaft leng Correspon Volume of Volume of Actual sha Overpour EMARKS Record any tremie, move	ncrete elevation a th before trimmin ding theoretical f excess in last tr f overflow (if any) aft volume before $\frac{V_A - V_T}{V_T} \times 1$ problems with the op- ement of reinforcing s led for observations.	volume: VT = uck: VE = volume: VT = uck: VE = volume: V0 = volume: V0 = volume: VT = uck: VT = volume: VT =	VLF × L =	Ft Cu. Yds. Cu. Yds.	s.	Cu. Yds. Cu. Yd		of priming in the his sheet in the			
A theoretical The actual cout and the cout and the cout and the country and the country are the country and the country are th	volume versus eleva	urve should be p and plotted on g concrete placen	lotted during const raph. nent curve from the	ruction of the	e shaft.	An elevation ched	concrete placement ck should be taken as investigated.	each truck po			

Area Operations Engineer

Project Manager

Project Number				County			Area		
M-I010(341)				Mobile SW Region Bridge Identification Number					
Bridge Station Test Shaft		To Station			Briag	je identification r	vumber		
Road Between				and					
Contractor				Inspecto	r				
lordan Pile Driv	ing / A.H. Beck			Jay Dav					
Date 3/23/18	Bent No.			Shaft No	3		Kind of Soil Silty Sand		
Diameter of Shaf '2" / 77" in Casi		1	Shaft Volume per Lir .047 CY / 1.198 C	near Foot (\ Y in Casin	/ _{LF}) g	Shaft Ti	p Elevation		
Load	Quantity	Slump	Pour	ng Time		Concrete	Tremie	Cylinder	
Number	(Cu. Yds.)	(in.)	Start	Finis	sh	Elevation	Tip Elevation	Number	
20	8		4:56 PM	5:01	PM	-28.8	-40		
21	8	9.5	5:01 PM	5:05	PM	-24.3	-35		
22	8		5:05 PM	5:10	PM	-15.8	-30		
23	8		5:10 PM	5:14	PM	-9.5	-20		
24	8		5:14 PM	5:20	PM	-3.6	-15		
25	8		5:20 PM	5:24	PM	3.2	-10		
26	8	9	5:24 PM	5:30	PM	9.0	-5		
27	4		5:40 PM	5:50	PM	10.2	-5		
				-			-		
			4						
			4						
V _Q =	212			Lieuw.					
			ion of pour prior t 180.2		g any	excess:).2		
3 Correspon	ding theoretical	volume : \	T = VLF × L =	197.3		Cu. Yds.			
4. Volume of	excess in last t	ruck : VE =	2 2	_ Cu. Yd	S.				
Volume of	overflow (if any): V o =	2	Cu. Yds.	000	20.00			
Actual sha	ft volume befor	e trimming	: VA = VQ - VE - V	0 =	208	Cu. Yo	ls.		
7. Overpour	$\frac{V_{A}-V_{A}}{V_{A}-V_{A}}\times$	100 =	5.4 %)					
REMARKS	- 10			lane at the Arts	/ac	ata dala al	wible gotherly //	of priming in the	
tremie, move	problems with the op ment of reinforcing and for observations	steel, difficulti	e mixing plant, supply ies with extraction of t	emporary ca	sing, ca	ete delays), or pos aving of shaft wall,	etc.) on the back of t	his sheet in the	
. A theoretical	volume versus elev	ation line sho	uld be plotted on the	graph on the	back o	f this sheet prior to	concrete placement		
out and the d	ata recorded above	and plotted of	pe plotted during cons on graph. cement curve from the					s each truck po	
. , will luigo val	Land of the land	ot obowing lo	nation of shaft		,	7 - 12 - 12 - 12 - 12 - 12 - 12 - 12 - 1			
5. Draw sketch	on back of this she	et snowing loc	Sation of Shart.						

786231

786238

DS-9

DS-15

Alabama Department of Transportation Concrete Placement and Testing Report

BMT-174 Pending Tests

Report ID: 56081

Pour Date: 03/23/2018

John R. Cooper Transportation Director

Project No: IM-I010(341)

Project Manager: Davison, Jay
Class/Type Concrete: DS-2A

Mix ID: DS2A-001-18

Area: Mobile

County: MOBILE

Prime Contractor: 11462 JORDAN PILE DRIVING, INC.

Ready Mix Supplier: Bayou Concrete, LLC - 10037 - Mobile, AL Plant 2(Canal)

Weather: Clear

Ambient Placement Temp Begin/End: 75 F / 70 F Cylinder Field Curing Temp Low/High: 60 F / 80 F

Method of Curing in Structure: Other Method
Cylinder Field Curing Method: Cylinder Curing Box
Time Placing Started/Completed: 02:00 PM / 06:05 PM

Supplied/Placed This Date: 212 CuYd / 212 CuYd

	Test Records												
Ticket No: 20138293		Test Start: 02:10	PM Tes	t End: (02:20 PM	Slump	(in): 9.25	Air %: 1.5	Temp (F): 82 C	Cast Date: 03/23/2	018 Inspector: Burdett, Chris	
		Cylinder Received			Average		X-Section Area	Total Applied	Req'd Strength	Actual Strength			
Sample ID	Cylinder No	Date	Test Date	Age	Diameter	Length	(sqin)	Load	(psi)	(psi)	Туре	Lab Technician	Lab Remarks
786223	DS-1	03/26/2018	03/27/2018	4	5.98	12.0	28.04	131040	Varies	4670	Type 5	11907 Holland, Travis	N/A
786224	DS-2	03/26/2018	03/28/2018	5	5.97	12.0	27.95	140410	Varies	5020	Type 3	11907 Holland, Travis	N/A
786225	DS-3	03/26/2018	03/30/2018	7	5.98	12.0	28.09	154430	Varies	5500	Type 5	11907 Holland, Travis	N/A
786227	DS-5												
786226	DS-4												

Ticket No: 20138300		Test Start: 03:20	PM Tes	t End:	03:30 PM	Slump	(in): 9.25	Air %: 1.2	Temp (F) : 80	Cast Date: 03/23/2018	8 Inspector: Burdett, Chris	
		Cylinder Received			Average		X-Section Area	Total Applied	Req'd Strength	Actual Strength			
Sample ID	Cylinder No	Date	Test Date	Age	Diameter	Length	(sqin)	Load	(psi)	(psi)	Туре	Lab Technician	Lab Remarks
786228	DS-6	03/26/2018	03/27/2018	4	6.00	12.0	28.27	113310	Varies	4010	Type 2	11907 Holland, Travis	N/A
786229	DS-7	03/26/2018	03/28/2018	5	5.98	12.0	28.09	123940	Varies	4410	Type 3	11907 Holland, Travis	N/A
786230	DS-8	03/26/2018	03/30/2018	7	5.97	12.0	27.99	152990	Varies	5470	Type 5	11907 Holland, Travis	N/A
786232	DS-10												

Ticket No: 20138308		Test Start: 03:50	PM Te	st End: (04:00 PM	Slump	(in): 9.50	Air %: 2	Temp (F): 79	Cast Date: 03/23/2018	Inspector: Burdett, Chris	
		Cylinder			A		X-Section	Total	Req'd	Actual			
Sample ID	Cylinder No	Received Date	Test Date	Age	Average Diameter	Length	Area (sqin)	Load	Strength (psi)	Strength (psi)		Lab Technician	Lab Remarks
786234	DS-11	03/26/2018	03/27/2018	4	5.99	12.0	28.13	129340	Varies	4600	Type 2	11907 Holland, Travis	N/A
786235	DS-12	03/26/2018	03/28/2018	5	5.98	12.0	28.09	140800	Varies	5010	Type 3	11907 Holland, Travis	N/A
786236	DS-13	03/26/2018	03/30/2018	7	6.00	12.0	28.27	153630	Varies	5430	Type 5	11907 Holland, Travis	N/A
786237	DS-14												

Date: 04/10/2018 01:50 pm Page 1 of 2

Governor

Alabama Department of Transportation Concrete Placement and Testing Report

BMT-174 Pending Tests

Report ID: 56081

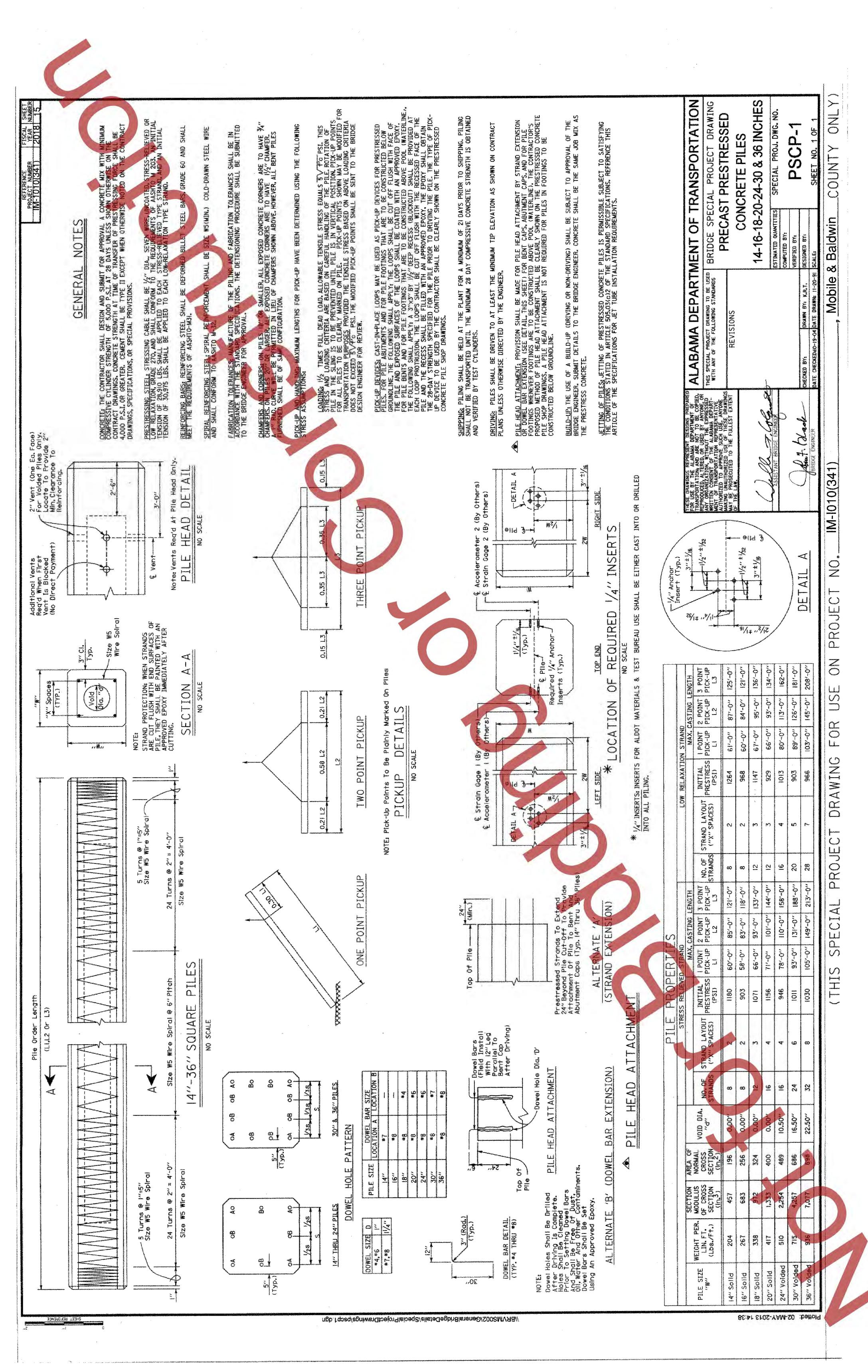
Pour Date: 03/23/2018

TABLE OF TRACE

John R. Cooper Transportation Director

Ticket No: 20138314		Test Start: 04:45	PM Te	st End:	04:55 PM	Slump	(in): 9.50	Air %: 1.5	Temp (F): 80	Cast Date: 03/23/2018	Inspector: Burdett, Chris	
		Cylinder Received			Average		X-Section Area	Total Applied	Req'd Strength	Actua Strengtl			
Sample ID	Cylinder No	Date	Test Date	Age	Diameter	Length	(sqin)	Load	(psi)	(psi) Туре	Lab Technician	Lab Remarks
786239	DS-16	03/26/2018	03/27/2018	4	5.98	12.0	28.09	109580	Varies	390	Type 3	11907 Holland, Travis	N/A
786240	DS-17	03/26/2018	03/28/2018	5	5.97	12.0	27.95	126550	Varies	4530	Type 5	11907 Holland, Travis	N/A
786241	DS-18	03/26/2018	03/30/2018	7	5.99	12.0	28.18	164140	Varies	5830	Type 3	11907 Holland, Travis	N/A
786242	DS-19												
786243	DS-20												

Ticket No: 20138321		Test Start: 05:25	5 PM Tes	st End:	05:35 PM	Slump ((in): 9.00	Air %: 1.5	Temp (F): 82	Cast Date: 03/	/23/2018	Inspector: Burdett, Chris	
		Cylinder Received			Average		X-Section Area	Total Applied	Req'd Strength	Actua Strength				
Sample ID	Cylinder No	Date	Test Date	Age	Diameter	Length	(sqin)	Load	(psi)	(psi) Туре	L	ab Technician	Lab Remarks
786244	DS-21	03/26/2018	03/27/2018	4	5.98	12.0	28.09	105880	Varies	3770	Type 3	1	1907 Holland, Travis	N/A
786245	DS-22	03/26/2018	03/28/2018	5	5.97	12.0	27.99	128670	Varies	4600	Type 5	1	1907 Holland, Travis	N/A
786246	DS-23	03/26/2018	03/30/2018	7	5.99	12.0	28.18	160430	Varies	5690	Type 5	1	1907 Holland, Travis	N/A
786247	DS-24													
786248	DS-25													


Pay Item(s): 0011 | 0190 | 506C087 | Drilled Shaft Construction, 6'-0" Diameter, Class DS2A Concrete

Reviewed by:

General Remarks: Rosalind Pettaway: Lab #99071-0001 Lab #99071-0002 Lab #99071-0003 Lab #99071-0004 Lab #99071-0005 Lab #99071-0006 Lab #99071-0007 Lab #99071-0008 Lab #99071-0009 Lab #99071-0010 Lab #99071-0012 Lab #99071-0013 Lab #99071-0015

Disclaimer: All tests are in accordance with applicable AASHTO and ASTM specifications: C-31, C-39, C-143, C-172, C-231, C-1064, and C-1231.

Date: 04/10/2018 01:50 pm Page 2 of 2

															· · · · · · · · · · · · · · · · · · ·									
IM-l010(341) 2018 16	RECORD OF TEST BORING	set: 106.31' RT Alignment: I-10 Bayway	74-0228 Eng./Geo. C.Tis	n: 0.0 ft. Date Complete	Type: Automatic Energy R	Spr N VALUE Sample Sample Sample A Value Xnd 6" Xnd 7" Xnd	▲ FINES CONTENT (%) ▲ 10 20 30 40 50 60 70 80 9	83.5 SS-16 7 15 19 34		φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ		78.5 SS-19 12 14 17 31	83.5 SS-20 6 7 10 17		• • • • • • • • • • • • • • • • • • •	DRILLING METHOD HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger			nent of Transportation		PROJECT NO. 17-1101-0145 1-10 MOBILE RIVER BRIDGE	MOBILE COUNTY, ALABAMA	Preliminary Project No:	TEST BORING RECORD Sheet 1 of 12
	Thompson	Description: 1-10 Mobile River Bridge and Bayway ing No.: TH-10 Boring Location: 470+55.32 Off	OT PE No.: DPI-0030(005)	12.3	Machine: CME 45C Drill Method: MR Hamm	Size; W.A. Drinker, Hompson Eng Groun	(SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=22.8				Medium dense, moist, red and pale brown, fine to medium grained, POORLY GRADED SAND (SP, A-3(0)), LL=NP PL=NP PI=NP NMC=19.9 %#200=3.7		-70.0 Medium dense, pale brown and reddish brown, with trace gravel	0.57-	Medium dense, moist, pale brown and reddish brown, fine to medium grained, POORLY GRADED SAND	LEGEN SAMPLER TYPE - Split Spoon - Shelby Tube CP - Dynamic Cone Penetrometer NQ - Rock Core			Alabama Departr	Bridge Sheet of	hompsor ENGINEERING) COTTAGE HILL R IOBILE, AL 36606	GEOTECHNICAL ENGINEER	
	RECORD OF TEST BORING	County: Mobile Site 106.31" RT Alignment: I-10 Bayway Borio	1-0228 Eng./Geo.: C.	t. Date Completed: 9/8/2017	Automatic Energy Ratio: 86%	9qv[1,0v "3 tsf "5 bnS = "3 bnS	10 20 30 4	SS-10 8 17 18 35		22 A 23 A 24 A 25			SS-14 12 12 12 18 85.[8	HSA - Hollow Stem Augers MR - Mud Rotary Wash SS SSA - Solid Stem Augers RC - Rock Coring ST HA - Hand Auger		Obtained Encountered	Recovery Rock Quality Designation	Penetromete	poon 7 Tube	namic Cone Penetrometer er Cuttings	Bag	Core
	# Thompson Engineering	Description: 1-10 Mobile River Bridge and Bayway ng No.: TH-10 Boring Location: 470+55.32 Offset:	No.: DPI-0030(005) TE Project No.: 1	Depth: 180.0 ft. Soil Depth: 180.0 ft. Core Depth	Machine: CME 45C Drill Method: MR Hammer	Size: IN/A DIMET: I nompson Eng	(SP-SM. A-3(0)), LL=NP PL=NP PI=NP NMC=23.7	%#200=6.9 -20.0 Dense, moist, reddish brown, fine grained, POORLY GRADED SILT WITH SAND (SP-SM)	-25.0 Dense, reddish brown and pale brown		-30.0 Dense, moist, red and pale brown, fine to medium grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL=NP PL=NP PI=NP NMC=22.4 %#200=5.6	-35.0	40.0 Medium dense, fine grained 53.5		- Medium dense, malst, red and pale brown, fine to 78.5 medium grained, POORLY GRADED SAND with SILT 1.	SAMPLER TYPE Split Spoon Shelby Tube Shelby Tube GB - Grab Bag - Dynamic Cone Penetrometer NQ - Rock Core	(0)	DOLOMITE NO - Not Obtained Stayer (GC) NE - Not Ench	ORLY GRADED GRAVEL h SILT and SAND (GP-GM) RQD	TY CLAY (CL-ML)	SS - Split Sp == Ground Water, ATD ST - Shelby	24 Hr./Delayed Ground Water AC - Aug	m Auger GB - Grab	R - Mud R
	RECORD OF TEST BORING	106.31' RT Alignment: I-10 Bayway Boriu	Eng./Geo.:	Date Completed: 9/8/2017 Tota	tomatic Energy Ratio: 86%	o "9 tet c "8 bnS = 3nd 6" Sulse W	▲ FINES CONTENT (%)	.1 2 4 6 .3 5 8 6	5 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		*	V.1.5	SS-8 9 14 15 29X			A - Hollow Stem Augers MR - Mud Rotary Wash SS A - Solid Stem Augers RC - Rock Coring ST - Hand Auger	STRATA SYMBOL	SANDY SILT (ML)	LEAN CLAY (CL)	CLAY	LAYEY SILTY	WELL GRADED SAND W	SILI and GRAVE!	SANDSTONE
	thompson ENGINEERING	Site Description: I-10 Mobile River Bridge and Bayway Boring No.: TH-10 Boring Location: 470+55.32 Offset:	0 3	Total Depth: 180.0 ft. Soil Depth: 180.0 ft. Core Depth: 0.0 ft.	lammer	Craphic Log	Loose, light blue and brown, fine grained, with trace	Set, light bute and Drown, life grained, with dates tell and wood, SILTY SAND (SM, A-2-4(0)), LL=NP NP PI=NP NMC=17.8 %#200=18.3 Library Sand dense, reddish brown, fine grained, POORLY ADED SAND with SILT (SP-SM) fium dense, pale brown, fine grained, POORLY ADED SAND with SILT (SP-SM, A-2-4(0)), LL=NP NP PI=NP NMC=21.1 %#200=10.9	e, moist, gray		0.0 Very soft, moist, dark gray, with trace gravel, SANDY FAT CLAY (CH, A-7-6(14)), LL=55 PL=23 PI=31 NMC=51.7 %#200=54.0	-5.0 Undisturbed sample obtained from 18.0 to 20.0 feet. Approximately 24 inches of recovery. Moist, dark gray and reddish brown, LEAN CLAY with SAND (CL. A-6(15)), LL=39 PL=16 PI=22 NMC=48.7	=73.8 n dense, moist, white, fine to medium grai	-15.0 -15.0	30.0 Medium dense, moist, white and pale brown, fine 28.5 grained, POORLY GRADED SAND with SILT	SS - Split Spoon ST - Shelby Tube AC - Auger Cuttings SSA - Shelby Tube AC - Auger Cuttings SSA - Shelby Tube AC - Auger Cuttings		SAND (SP)		SILTY SAND (SM)	POORLY GRADE with SILT (SP-SM	VIC SOILS		GKAVEL (GP)

FISCAL SHEET YEAR NUMBER

> REFERENCE PROJECT NUMBER

17	S S					06	13(1) 2 2 6 5 7 8 6 2 1 1 1 2 5 6 6			· · · · · · · · · · · · · · · · · · ·	.										·, ·			
IM-I010(341) 2018	RECORD OF TEST BOR	Set: 106.31' RT Alignment: I-10 Bayway Fro / Geo C Tisher	1797615.33 Date Started: 9/7/2017 opth: 0.0 ft. Date Completed: 9/8/2017	Methods: AASHTO T206 & T207 Type: Automatic Energy Ra	vater: TOB 1.8 ft. 24 HR 20.	Sample (blows/foot) Sample (content) Sam	10000000000000000000000000000000000000		X			**************************************		78.5 SS-34 30 50/6 X 50/6		DRILLING METHOD HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger				ment of Transportation	——————————————————————————————————————	OBILE RIVER BRI TEST PROGRAM		TEST BORING RECORD
	thom pson	Site Description: 1-10 Mobile River Bridge and Bayway Boring No.: TH-10 Boring Location: 470+55.32 Off Al DOT PF No. 1 DPI-0030(005) TE Project No.: 15-	12.9 ft. Northing: 245999.249 Easting: Depth: 180.0 ft. Soil Depth: 180.0 ft. Core D	Hole Diameter (in): 4-inch AASHTO / ASTM Sampl Machine: CME 45C Drill Method: MR Hamr	Size: N/A	AATERIAL DESCRIPTION	-140.0 -140.0	155.0	145.0 Hard, moist, bluish gray, FAT CLAY (CH, A-7-6(42)), LL=57 PL=14 PI=43 NMC=18.1 %#200=92.3	165.0	155.0	170.0 with trace clay and trace gravel, SILTY SAND (SM, A-2-4(0)), LL=NP PL=NP PI=NP NMC=15.1	175.0		LEGE	SAMPLER TYPE SS - Split Spoon AC - Auger Cuttings ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core				Alabe	Bridge Sneet of	GINEERING SOTTAGE HILL	APPROVED: SAM STERNBERG III, P.E.	GEOTECHNICAL ENGINEER DATE:
	RECORD OF TEST BORING	Offset: 106.31' RT Alignment: I-10 Bayway 15-1101-0238 Fna /Geo · IC Tisher	1797615.33 Date Started: 9/7/2017 Depth: 0.0 ft. Date Completed: 9/8/2017	ods: AASHTO T206 & T207 Automatic Energy Ratio: 86%	20.0 ft.	Log Sample (blows/foot) Sample (sample 6"				133.5 SS-28 16 37 39 76 X 20			143.5 SS-30 16 28 31 59	148.5 SS-31 8 11 12 23 X		DRILLING METHOD HSA - Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers HA - Hand Auger		Not Obtained		Rock	Pocket Penetrometer Solit Spoon	Shell	Auger Cuttings	Grab Bag Rock Core
	thompson	Site Description: 1-10 Mobile River Bridge and Bayway Boring No.: TH-10 Boring Location: 470+55.32	12.9 ft. Northing: 245999.249 Eas epth: 180.0 ft. Soil Depth: 180.0 ft.	Hole Diameter (in): 4-inch AASHTO / ASTM fachine: CME 45C Drill Method: MR	N Driller: Thompson Eng	MATERIAL DESCRIPTION Grap	6(12	SAND (SP), with gravel	-115.0 Dense, pale brown, medium to coarse grained	-120.0 Very dense, moist, pale brown, fine to medium grained, with trace gravel, SILTY SAND (SM,	8. 6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	140.0	-130.0 -145.0	-135.0 -135.0 - Very stiff, moist, bluish gray, SANDY LEAN CLAY		SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Penetrometer NQ - Rock Core	SOLS	OLOMITE	CLAYEY GRAVEL (GC)	With SILT and SAND (GP-GM) RQ	SILTY CLAY (CL-ML) pp -	iround Water, ATD ST -	= 24 Hr./Delayed Ground Water AC - AC - Hollow Stem Auger	SSA - Solid Stem Auger MR - Mud Rotary
	RECORD OF TEST BORING	106.31' RT Alignment: I-10 Bayway Fna /Gao : IC Tisher	ate Started: 9/7/20	TO T206 & T207	24 HR 20	SPT N VALUE Sample Sample Tat 6" Tat 6" Yet MC LL Xnd 6" Yet MC LL Xnd 10 20 30 40 50 60 70 80 90			23 16 22 24 46	S-24 2 3 4 7		*	S-25 2 5 8 13	Z-1-3		DRILLING METHOD - Hollow Stem Augers - Solid Stem Augers - Hand Auger	STRATA SYMB(SANDY SILT (ML)	LEAN CLAY (CL)	TOPSOIL	CLAYEY SAND (SC)	OL) CLAYEY SILTY SAND (SC-S	WELL GRADED SAND with SILT and GRAVEL (SW-SM)	SANDSTONE
	thompson Enginerating	Site Description: I-10 Mobile River Bridge and Bayway Boring No.: TH-10 Boring Location: 470+55.32 Offset: 106.	45999.249 vth: 180.0 ft.	STN	ore Size: N/A Driller: Thompson Eng Groundwater:	MATERIAL DESCRIPTION Graphic Log Log (ft.)		°	-85.0	-90.00 Firm, moist, dark gray, FAT CLAY (CH)	026.	Undisturbed sample obtained from 108.0 to 110.0 feet. Approximately 24 inches of recovery. Moist, greenish gray, with trace sand, FAT CLAY (CH, A-7-6(66)), LL=85 PL=23 PI=62 NMC=39.5	-100.0	Undisturbed sample obtained from 118.0 to 120.0 feet. Approximately 24 inches of recovery.	t, greenish gray, LEAN CLAY with	SAMPLER TYPE SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Penetrometer NQ - Rock Core HSA -		SAND (SP)		FAT CLAY (CH)	SILTY SAND (SM)	GANIC SOILS	Paving	GRAVEL (GP)

.

.

.

IM-1010(341) 2018 18	County: Mobil et: 18.84' LT Alignment; Mobil 101-0228 Eng./Geo. B.B. 799417.497 Date Started: 4/20/20 h: 0.0 ft. Date Completed: 4/2 / 20/20 Type: Automatic Energy Rationatic 24 HR 0.0	8.5 SS-16 8 10 6 16 16 16 16 16 16 16 16 16 16 16 16 1	DRILLING METHOD HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger	PROJECT NO. 17-1101-0145 I-10 MOBILE RIVER BRIDGE LOAD TEST PROGRAM MOBILE COUNTY, ALABAMA TEST BORING RECORD Sheet 3 of 12
thompson	Site Description: I-10 Mobile River Bridge and Bayway Boring No.: MB-1 Boring Location: 514+25.88 Offset: ALDOT PE No. DPI-0030(005) TE Project No.: 15-110 Elev.: 2.9 ft. Northing: 249675.65 Easting: 1799 Total Depth: 300.0 ft. Soil Depth: 300.0 ft. Core Depth: Drill Machine: CME 550X Drill Method: MR Hammer Ty Core Size: N/A Driller: Thompson Eng Groundwaler Core Size: N/A Driller: Thompson Eng Driller: Thompson Eng Driller: Thomps	Se, with trace shells se, wet, pale brown, fine to medium grained, and and an	SS - Split Spoon SS - Split Spoon ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core	Alabama Departm Bridge Sheet of thompson engineering 2970 COTTAGE HILL RD. MOBILE, AL 36606 APPROVED: SAM STERNBERG III, P.E. GEOTECHNICAL ENGINEER DATE:
DECODD OF TEST BODING	County: Mobile Offset: 18.84° LT Alignment; -10 Main Span 15-1101-0228 Eng./Geo.: B.Ellis/C.Tisher 1799417.497 Date Started: 4/20/2016 Ipling Methods: AASHTO T206 & T207 mmer Type: Automatic Energy Ratio: 88% Oundwater: TOB 0.0 ft. 24 HR 0.0 ft.	### Part	HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger - Not Obtained - Not Encountered	C Recovery LD Rock Quality Designation - Pocket Penetrometer - Split Spoon - Shelby Tube - Dynamic Cone Penetrometer - Auger Cuttings - Grab Bag - Rock Core
thompson	Site Description: 1-10 Mobile River Bridge and Bayway Boring No.: MB-1 ALDOT PE No. DPI-0030(005) Elev.: 2.9 ft. Northing: 249675.65 Flev.: 2.9 ft. Northing: 249675.65 Bore Hole Diameter (in): 4-inch Drill Machine: CME 550X Drill Machine: CME 550X Driller: Thompson Eng Gre	8.8 1 GN	SS-Split Spoon ST-Shelby Tube DCP-Dynamic Cone Penetrometer NQ - Rock Core MBOLS CLAYEY GRAVEL (GC) NE	S-SM) HSA - Hollow Stem Auger SSA - Solid Stem Auger MR - Mud Rotary POORLY GRADED GRAVEL REC ROD PP - I SSA - Solid Stem Auger MR - Mud Rotary ROD SS - SOlid Stem Auger NQ -
	County: Mobile	#3 haf #4	HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger STRATA SY SANDY SILT (ML)	AY (CH) AND (SM) Y GRADED SAND T (SP-SM) T (SP) T (GP) T (GP) T (GP)
thompson	1-10 Mobile River Bridge and Baywa Boring Location: 470+55	$\frac{1}{2}$	SS - Split Spoon ST - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core STORY - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core STORY - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core STORY - Shelby Tube GB - Grab Bag DCP - Dynamic Cone Penetrometer NQ - Rock Core	FAT CLAY SILTY SAN SILTY SAN With SILT With SILT ORGANIC GRAVEL (

2018 19	SORING	Span	. Tisher	9	88%	VALUE s/foot) C LL Y NTENT (%) ▲		.,						ry Wash ng			C				ORD
IM-1010(341) 2	ORD OF TEST	County: Mobile Alignment: I-10 Main	4/20/20	TO T206 & T207	24 HR 0.0 ft	3rd 6" (blow (blow X X X X Y X X Y X X X X X X X X X X X			•		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	27 61X ♦		DRILLING METHOD Augers MR - Mud Rotary ugers RC - Rock Coring			ransportatio		O. 17-1101-0145 RIVER BRIDGE PROGRAM	IY, ALA	Project No: ORING REC Sheet 4 of 12
	REC	Offset: 18.84' LT	15-1101-022	Depth: 0.0 ft.	ammer lype: Automatic roundwater: TOB 0.0 ft.	oldms2 elqms2 eqvT\.oV "8 tst	123.5 SS-28 15 29	128.5 SS-29 4 5	133.5	SS-31 15 14	143.5 SS-32 7 8	148.5 SS-33 28 34	GEND	HSA - Hollow Stem Au SSA - Solid Stem Auge HA - Hand Auger			rtment of Tr		ECT N OBILE TEST	MOBIL	Preliminary TEST B
		I-10 Mobile River Bridge and Bayway Boring Location: 514+25.88	TE Project No	AASHTO / ASTM Sa	Wethod: MR Ha	NOLLGR		ce sand, FAT CLAY (CH, PI=32 NMC=23.7	wet, gray, fine grained, POORLY with SILT (SP-SM)			grained, POORLY (SP-SM, A-2-4(0)), LL=NP		TYPE AC - Auger Cuttings GB - Grab Bag NQ - Rock Core			bama Depa	Of	Thompsor	OBILE, AL 36606 STERNBERG III, F	OTECHNICAL ENGINEER
	ENGINE BUGINE	Site Description: I-10 Mobile R Boring No.: MB-1 Bori	2.9 ft. Northing: 2	Jeptn: 300.0 ft. Soil Deptr Tole Diameter (in): 4-inch	XOS 20X	MATER	120.0 Very dense	Stiff, moist, gray, with trace A-7-6(34)), LL=53 PL=211	J30.0 Medium dense, wet, gray, GRADED SAND with SIL1	-135.0 Medium dense	-140.0 	-145.0 Very dense, wet, gray, fine grained, POORLY GRADED SAND with SILT (SP-SM, A-2-4(0)).		SAMPLER T Split Spoon Shelby Tube G - Dynamic Cone Penetrometer N			Alat	Bridge Sheet		APPROVED:	GEOTE :
	BORING	an	isher		88% Drill M	3 € € € €	A 1125.0		135.0	140.0	145.0	120.0		Rotary Wash SS - 8 ST - 8 ST - 8 DCP -							
	ORD OF TEST	County: Mobile Alignment: I-10 Main	Eng./Geo.: B.El Started: 4/20/20	Completed: 4/2//2 T206 & T207	24 HR 0.0 ft.	SPT N Value (blow 10 20 30 40 5	ξ · · · · · · · · · · · · · · · · · · ·	×	25		92 \$	88		ING METHOD MR - Mud I RC - Rock			Designation		!	itrometer	
	RECORD	Offset: 18.84' LT	0228 17.497 D	Meth 0.0	ner Type: Automatic	(ff.) Sample Mo./Type	90.5 ST-1 93.5 SS-23 2 4 4	98.5 ST-2	103.5 SS-24 3 20 32	108.5 SS-25 14 20 28	113.5 SS-26 19 32 33	118.5 SS-27 9 15 23		DRILL HSA - Hollow Stem Augers SSA - Solid Stem Augers HA - Hand Auger		Not Obtained Not Encountered	Recovery Rock Quality Desi	et Penetrome	it Spoon elby Tube	rge .	Grab bag Rock Core
		d Bayway 514+25.88	Project No.	Core	MR son Eng		of the sample length. rom 90.5 to 92.5 feet. overy. rown, with trace sand, =52 PL=22 Pl=31	98.5 to 100.5 feet. y. ht gray, FAT CLAY 51 NIMC=44.0	, fine grained, 7-4(0)), LL=21	POORLY	oerse grained, -b(0)), LL=NP 3.3		LEGEND	E Auger Cuttings Grab Bag Rock Core		NO -	VEL ROD	- dd	SS - SS S - TS	בי י ע נ	NO - R
	PSON EERING	[유]	-0030(005)	oll Depth:		MATERIAL DESCRIPT	ed the first 12 inches of the bed sample obtained from thately 24 inches of recover f, moist, dark grayish brown AY (CH, A-7-6(29)), LL=52 0.1 %#200=75.7	thed sample obtained from 98 mately 24 inches of recovery. T, moist, dark brown and light 7-6(71), LL=89 PL=28 PI=611	ense, wet, gray and light gray, CLAYEY SAND (SC-SM, A-2-4 PI=4 NMC=23.9 %#200=26.7	se, wet, light gray, fine grained,	nse, wet, light gray, fine to c Y GRADED SAND (SP, A-1 Pi=NP NMC=19.5 %#200=	fine grained, with trace grav		SAMPLER TYPE AC - Auger GB - Grab Penetrometer NQ - Rock		OMITE /EY GRAVEL (GC)	Y GRADED GRA	CLAY (C	ınd Water, ATD	r./Delayed Ground low Stem Auger	d Stem Auger Rotary
	thom	≝ ≟	2.9 ft.	al Depth: 300.	Core Size: N/A	Mapth (ft) c: (ft) c: Elevation (ft)	penetral Undistur Approxii -90.0 Very stif	-95.0 - Undistur		-105.0 -105.0 -110.0 GRADE	Very de Very de Very de POORL	-115.0 -120.0	1	SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone	MBOLS		POORL with SIL	SILT	-SM) = Ground	₩ 24 H HSA - Holl	SSA - Soli MR - Mud
	TEST BORING	Mobile I-10 Main Span	B.EIII	4/2//2	y Katio: 88% 0.0 ft.	◆ SPT N VALUE (blows/foot) PL MC LL X								D R - Mud Rotary Wash C - Rock Coring	STRATA SYM	SILT	LAY (CL)	Y SAND (SC)	Y SILTY SAND (SC	RADED SAND with d GRAVEL (SW-SM)	STONE
	RECORD OF	County: LT Alignment:	Date Started	SHTO T206 &	matic Energy 0.0 ft. 24 HR	"8 bn2 3rd 6" 9ulsV V	8 12 20X	50/5 X 50/5	2 28 24 52	+ 000+ × ×	8 7 15	\$ \$		DRILLING METHOD Stem Augers MR em Augers RC jer		SANDY	EAN CLEAN CL	CLAYE	CLAYE)	WELL G	SANDS
		38 Offset: 18.84'	6.: 15-1101-0228 3: 1799417.497	re Deptn: 0.0 ft.	Automatic Automatic Ion Ion	Graphic Log Sample Depth (ft.) Sample No./Type	63.5	88.5 SS-18 35	73.5 SS-19 12	78.5 SS-20 50	83.5 SS-21	88.5	LEGEND	HSA - Hollow Stem SSA - Solid Stem Al HA - Hand Auger		(SP) MH)	AY (CH)	AND (SM)	Y GRADED SANI T (SP-SM)	COCCO (OF)	L (GP)
		r Bridge and Bayway Location: 514+25.8	75.65 Easting	300.0 ft. AASHTO / ASTM Sa	ethod: MR	CRIPTION	reddish brown and brown, fine to ORLY GRADED SAND with SILT-NP PI=NP NMC=19.3				to fine grained, with	LAY (CH) hrough hoisting ring and	W-SP-VAN-SIN-SP-VALUE AND	t TYPE AC - Auger Cuttings GB - Grab Bag NQ - Rock Core		SAND (SP		SILTYS	POORL With SIL	Paving	GRAVEL
	mpson IGINEERING	Site Description: I-10 Mobile River Bridge and Bayway Boring No.: MB-1 Boring Location: 514+25.88 Offset: 18.84' LT	DPI-0030(005)	10.0 ft. Soil Depth:	CME 550X Drill M Driller:	MATERIAL DESC	-SM) dium dense, wet, reddish b dium grained, POORLY GF	Rec	y dense, light brown	y dense	lium dense, wet, medium e gravel	Firm, moist, dark gray, FAT CLAY (CH) NOTE: Sample rods slipped through hoisting		SAMPLER Penetrometer							
	tho	Site Description Boring No.: MB	ALDOT PE No.: Elev.: 2.9 ft.	Bore Hole Diam	Core Size: N/A	Oepth (机) C Elevation (机)	; I	-65.0 - Very	-70.0 Very	-75.0 -75.0 -80.0		-85.0 -85.0 		SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone							

SHEET NUMBER

FERENCE ECT NUMBER

RECORD DRILLING METHOD
HSA - Hollow Stem Augers
SSA - Solid Stem Augers
HA - Hand Auger Energy Ratio: 88%
24 HR 0.0 ft.

SPT N VALUE
(blows/foot) | County: Mobile | County: Mobile | Alignment; I-10 Main Spar | Eng./Geo. B.Ellis/C.Tist | Date Started: 4/20/2016 | Date Completed: 4/27/2016 | AASHTO T206 & T207 TEST BO **Transportation** FINES CONTENT PROJECT NO. 17-1101-0145 I-10 MOBILE RIVER BRIDGE LOAD TEST PROGRAM MOBILE COUNTY, ALABAMA F BORING Sheet 5 of Preliminary Project No: O RECORD 8 00 **SUISV M** 48 19 4 3rd 6 **TEST** 33 2nd 6

 Site Description:
 I-10 Mobile River Bridge and Bayway

 Boring No.:
 MB-1
 Boring Location:
 514+25.88
 Offset:
 18.84'LT

 ALDOT PE No.:
 DPI-0030(005)
 TE Project No.:
 15-1101-0228

 Elev.:
 2.9 ft.
 Northing:
 249675.65
 Easting:
 1799417.497

 Total Depth:
 300.0 ft.
 Soil Depth:
 300.0 ft.
 Core Depth:
 0.0 ft.

 Bore Hole Diameter (in):
 4-inch
 AASHTO / ASTM Sampling Methods:
 AA

 Borill Machine:
 CME 550X
 Drill Method:
 MR
 Hammer Type:
 Automa

 Core Size:
 N/A
 Driller:
 Thompson Eng
 Groundwater:
 TOB
 0.0

 of "8 121 SS-45 SS-43 Sample No.Type Department 228.5 218.5 mple Depth (ft.) EGEND 2970 COTTAGE HILL RD. MOBILE, AL 36606 thompson SAM STERNBERG III, P.E. Graphic ENGINEERING EOTECHNICAL ENGINEER Loose, wet, gray, fine grained, SILTY SAND (SM A-2-4(0)), LL=NP PL=NP PI=NP NMC=25.3 t TYPE AC - Auger Cuttings GB - Grab Bag NQ - Rock Core Alabama MATERIAL DESCRIPTION Sheet thompson APPROVED Bridge 6#200=88.7 DATE -235.0 230.0 -210.0 (11) Elevation Depth (ft) 210.0 220.0 SS 215.1 **TEST BORING** | County: Mobile | Alignment: I-10 Main Span | Eng./Geo.: | B.Ellis/C.Tisher , FINES CONTENT (%) 4 HSA - Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers RC - Rock Coring HA - Hand Auger ● SPT N VALUE (blows/foot)
 Site Description:
 I-10 Mobile River Bridge and Bayway
 ALDOT PE No.: | MB-1
 County:
 Mobile Robine

 Boring No.: | MB-1
 Boring Location:
 514+25.88
 Offset:
 18.84* LT
 Alignment:
 1-10 Main Spandent:

 ALDOT PE No.: | MB-1
 Boring Location:
 514+25.88
 Offset:
 15-1101-0228
 Eng./Geo.:
 B.Ellis/C.Tis

 Elev.: | 2.9 ft.
 Northing:
 249675.65
 Easting:
 1799417.497
 Date Started:
 4/20/2016

 Total Depth:
 300.0 ft.
 Core Depth:
 0.0 ft.
 Date Completed:
 4/27/2016

 Bore Hole Diameter (in):
 4-inch
 AASHTO / ASTM Sampling Methods:
 AASHTO / T206 & T207

 Brill Machine:
 CME 550X
 Drill Method:
 MR
 Hammer Type:
 Automatic
 Energy Ratio:
 88%

 Core Size:
 N/A
 Driller:
 Thompson Eng
 Groundwater:
 TOB
 0.0 ft.
 0 지× **O** DCP - Dynamic Cone Penetrometer Rock Quality Designation RECORD 70. 35 eulsV N Ñ 29 3rd 6" pp - Pocket Penetrometer 4 4 8 "8 bns NE - Not Encountered 7 43 2 AC - Auger Cuttings "3 ist NO - Not Obtained Recovery SS-41 SS-42 SS-40 ST - Shelby Tube SS-39 Sample Supple ST-4 SS - Split Spoon NQ - Rock Core GB - Grab Bag 193.5 183.5 188.5 Sample Depth (ft.) Graphic Log RQD REC Undisturbed sample obtained from 188.5 to 190.5 feet. Approximately 24 inches of recovery. Hard, wet, bluish gray, SANDY LEAN CLAY (CL, A-6(6)), LL=28 PL=14 PI=14 NMC=17.8 %#200=62.9 d, LEAN CLAY Hard, wet, bluish gray, with trace sand, LEAN CLAY (CL, A-7-6(29)), LL=46 PL=16 Pl=30 NMC=21,0 %#200=91.7 Very dense, wet, gray, fine grained, POORLY GRADED SAND with SILT (SP-SM, A-3(0)), LL PL=NP PI=NP NMC=26.5 %#200=9.7 24 Hr./Delayed Ground Water POORLY GRADED GRAVEL with SILT and SAND (GP-GM) MATERIAL DESCRIPTION CLAYEY GRAVEL (GC) SILTY CLAY (CL-ML) - Hollow Stem Auger Ground Water, ATD SSA - Solid Stem Auger thompson DOLOMITE MR - Mud Rotary Split Spoon Shelby Tube - Dynamic Co -205.0 195.0 180.0 (Ħ) Elevation SYMBOLS 200.0 SST 195.0 185.0 Depth (ft) CLAYEY SILTY SAND (SC-SM) WELL GRADED SAND with SILT and GRAVEL (SW-SM) ST BORING | County: | Mobile | County: | County: | County: | Mobile | County: | Coun HSA - Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers RC - Rock Coring HA - Hand Auger CONTENT (%) TRATA CLAYEY SAND (SC) Energy Ratio: 88% 24 HR 0.0 ft. O.0 ft.
 SPT N VALUE
 (blows/foot) (CL) ⋚ф SANDSTONE FINES (S Ш TOPSOIL EAN CL 二大 0 **6** RECORD 50+ 100* 99 \$ A Value __ 8__ 20 32 $\tilde{\infty}$ "8 bn£ 9 8 47 9 24 2nd 6" 9 26 23 "8 1s f 88-38 SS-35 SS-36 \$5-37 (OL) SS-34 ST-3 elqms2 eqvT\.oM 0 ORLY GRADEL h SILT (SP-SM) 163.5 168.5 173.5 178.5 153.5 Sample Depth (ff.) FAT CLAY (CH) LEGEND (SP-SAND (Graphic Log SAND (SP) SILT (MH) GRAVEL ORGAN Paving SILTY Very dense, wet, greenish gray, fine grained, with trace gravel, POORLY GRADED SAND with SILT (SP-SM, A-2-4(0)), LL=NP PL=NP PI=NP NMC=23. %#200=11.5 GRADED Dense, wet, greenish gray, fine grained, CLAYEY SAND (SC, A-6(7)), LL=36 PL=13 PI=24 NMC=23. %#200=48.4 with Undisturbed sample obtained from 153.5 to 155.5 feet. Approximately 24 inches of recovery. With trace day 0 AC - Auger Cuttings GB - Grab Bag NQ - Rock Core MATERIAL DESCRIPTION Dense, wet, gray, fine grained, SAND with SILT (SP-SM) SAMPLER thompson Very dense SS - Split Spoon ST - Shelby Tube DCP - Dynamic C 170.0 (y)Elevation 175.0 165.0 170.0 155.0 160.0 Depth (ff)

FISCAL SHEET YEAR NUMBER

REFERENCE PROJECT NUMBER | Core Size: | N/A | Driller: | Thompson Englering | Core Size: | Thompson Englering | Core Size: | Thompson Englering | Core Size: | Thompson Englering | Core TEST BORIN RECORD of 12 DRILLING METHOD
HSA - Hollow Stem Augers
SSA - Solid Stem Augers
HA - Hand Auger FINES CONTENT (0 30 40 50 60 70 **Transportation** PROJECT NO. 17-1101-0145 I-10 MOBILE RIVER BRIDGE LOAD TEST PROGRAM MOBILE COUNTY, ALABAMA BORING F Sheet 6 of Preliminary Project No: 4 N Value 3rd 6" TEST Sug 6 of "3 tet Department Sample Depth (ft.) rod thompson SAM STERNBERG III, P.E. 2970 COTTAGE HILL MOBILE, AL 36606 ENGINEERING SAMPLER TYPE
AC - Auger Cuttings
GB - Grab Bag
netrometer NQ - Rock Core Alabama MATERIAL DESCRIPTION Boring Terminated at 300.0 **Bridge Sheet** APPROVED SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Penetro DATE (H) Elevation Depth (机) **TEST BORING** HSA - Hollow Stem Augers MR - Mud Rotary Wash SSA - Solid Stem Augers RC - Rock Coring HA - Hand Auger FINES CONTENT (%) O.0 ft.
 SPT N VALUE
 (blows/foot)
 Boring Location:| Orthonormal Solution | Delignation | Deligna | County: Mobile | Alignment: I-10 Main Sp | Eng./Geo.: B.Ellis/C.T RECORD OF DCP - Dynamic Cone Penetrometer Rock Quality Designation 9/09 50/4 8 N Value × \times "8 bit pp - Pocket Penetrometer 50/4 20 **2nd 6**" NE - Not Encountered 25 24 AC - Auger Cuttings "8 is f NO - Not Obtained Recovery SS-51 ST - Shelby Tube SS-49 - Split Spoon elqms2 eqvT\.cM NQ - Rock Core GB - Grab Bag Sample Depth (ff.) LEGEND I-10 Mobile River Bridge and Bayway

| Boring Location: | 514+25.88 | Offs | PI-0030(005) | TE Project No.: | 15-1 Graphic Log RQD REC SS dense, wet, light gray, fine grained, with trace ii, POORLY GRADED SAND with SILT (SP-SM, (0)), LL=NP PL=NP PI=NP NMC=21.1 TYPE
AC - Auger Cuttings
GB - Grab Bag
NQ - Rock Core 24 Hr./Delayed Ground Water POORLY GRADED GRAVEL with SILT and SAND (GP-GM) MATERIAL DESCRIPTION CLAYEY GRAVEL (GC) SILTY CLAY (CL-ML) - Hollow Stem Auger Ground Water, ATD Solid Stem Auger thompson DOLOMITE - Mud Rotary Site Description: HSA SSA 区区 270.0 Elevation SYMBOLS 275.0 280.0 ntqəCl (ff) SILTY SAND (SC-SM) WELL GRADED SAND with SILT and GRAVEL (SW-SM) **EST BORING** 10 Main Span B.Ellis/C.Tisher DRILLING METHOD
HSA - Hollow Stem Augers
SSA - Solid Stem Augers
HA - Hand Auger 二× SAND (SC) VES CONTENT (SPT N VALUE (blows/foot) Ratio: 88% 20/2016 RA AY (CL) Şф 0.0 ft. ONE SANDST
 Boring Location:
 514+25.88
 Offset:
 18.84° LT
 Alignment:
 Nounty:
 Northing:
 249675.65
 Easting:
 17-99417.497
 Date Started:
 4/2

 Bore Hole Diameter (in):
 4-inch
 AASHTO / ASTM Sampling Methods:
 AASHTO / ASTM Sampling Methods:
 AASHTO T206 & T207

 Core Size:
 N/A
 Driller:
 Thompson Eng
 Groundwater:
 TOB
 0.0 ft.
 Energy F
 목X 를 CLAYEY POPSOIL CLAYEY LEANC **NDA** Q H County: RECORD \tilde{c} N Value × × "8 bt£ 20/0 20 0. 2uq 9,, AND 8 43 ம "8 1s h Find the Engine Engine Engine Bridge and Bayway

Site Description: I-10 Mobile River Bridge and Bayway

- No.: MB-1

Boring Location: 514+25.88 Offset: 18.84*

TE Project No.: 15-1101-0228

| Fasting: 1799417.497 SS-48 SS-47 SOILS (OL) 46 Sample No./Type SS POORLY GRADED with SILT (SP-SM) (SMI) 268.5 Sample Depth (ft.) LEGEND (GP) FAT CLAY (C IY SAND SAND (SP) Graphic SILT (MH) GRAVEL ORGANI Paving Very dense, wet, gray, fine grained, POORLY GRADED SAND with SILT (SP-SM) MATERIAL DESCRIPTION SS - Split Spoon ST - Shelby Tube DCP - Dynamic Cone Penet Very -255.0 245.0 (H) Elevation 265.0 255.0 245.0 250.0 (H) Depth

SHEET NUMBER

REFERENCE PROJECT NUMBER

Appendix C Calibrations

Report of Bi-Directional Load Testing I-10 Mobile River Bridge AFT Project No. 518009

Mobile, Álabama

Range: 230 mm

Calibration Date:

February 07, 2018

Kally Rogers

Serial Number: 1744921

This calibration has been verified/validated as of 02/09/2018

Calibration Instruction: CI-4400

Technician:

Temperature:

Cable Length: N/A

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2621	2619	2620	-0.38	-0.17	-0.05	-0.02
46.0	3593	3592	3593	46.20	0.09	46.15	0.06
92.0	4549	4552	4551	92.09	0.04	91.85	-0.07
138.0	5515	5516	5516	138.31	0.14	138.08	0.03
184.0	6471	6468	6470	184.01	0.00	183.96	-0.02
230.0	7424	7422	7423	229.68	-0.14	230.01	0.01

(mm) Linear Gage Factor (G): 0.04790 (mm/digit)

Regression Zero: 2628

Polynomial Gage Factors:

A: 1.0301E-07

B: 0.04687 **C**:

Calculate C by setting D = 0 and R₁ = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001886 (inches/digit)

Polynomial Gage Factors:

A: 4.0556E-09 **B:** 0.001845

Calculate C by setting D = 0 and $R_1 = initial$ field zero reading into the polynomial equation

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Range: 230 mm

Calibration Date: This calibration has been verified/validated as of 02/09/2018

February 07, 2018

Kathy Rogers

Serial Number: 1744922

Temperature:

Calibration Instruction: CI-4400

Cable Length: N/A

Technician:

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2665	2664	2665	-0.50	-0.22	-0.06	-0.03
46.0	3652	3650	3651	46.21	0.09	46.12	0.05
92.0	4625	4625	4625	92.33	0.14	91.98	-0.01
138.0	5598	5595	5597	138.33	0.14	137.98	-0.01
184.0	6562	6561	6562	184.02	0.01	183.93	-0.03
230.0	7526	7523	7525	229.61	-0.17	230.05	0.02

(mm) Linear Gage Factor (G): 0.04735 (mm/digit)

Regression Zero: 2675

Polynomial Gage Factors:

A: 1.3753E-07 B: 0.04595 C:

Calculate C by setting D = 0 and R, = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001864 (inches/digit)

Calculate C by setting D = 0 and R_1 = initial field zero reading into the polynomial equation

Calculated Displacement:

Polynomial Gage Factors:

Linear, $D = G(R_1 - R_0)$

A: 5.4145E-09 **B:** 0.001809

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Range: 230 mm

Calibration Date:

December 01, 2017

Kathy Rogers

Serial Number: 1741940

This calibration has been verified/validated as of 01/08/2018 Temperature:

Calibration Instruction: CI-4400

Technician:

Cable Length: N/A

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2617	2617	2617	-0.39	-0.17	-0.05	-0.02
46.0	3566	3565	3566	46.16	0.07	46.09	0.04
92.0	4506	4506	4506	92.33	0.14	92.04	0.02
138.0	5440	5439	5440	138.15	0.06	137.87	-0.06
184.0	6376	6376	6376	184.12	0.05	184.05	0.02
230.0	7305	7303	7304	229.67	-0.14	230.01	0.00

(mm) Linear Gage Factor (G): 0.04908 (mm/ digit)

Regression Zero: 2625

Polynomial Gage Factors:

A: 1.1828E-07

0.04791

Calculate C by setting D = 0 and R, = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001932 (inches/digit)

Polynomial Gage Factors:

A: 4.6565E-09

B: 0.001886

Calculate C by setting D = 0 and R_1 = initial field zero reading into the polynomial equation

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Range: 230 mm

Calibration Date: December 01, 2017 This calibration has been verified/validated as of 01/08/2018

Serial Number: 1741941

Temperature:

Kathy Rogers

Calibration Instruction: CI-4400

Cable Length: N/A

Technician:

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2747	2745	2746	-0.39	-0.17	-0.05	-0.02
46.0	3711	3709	3710	46.16	0.07	46.07	0.03
92.0	4667	4667	4667	92.36	0.16	92.06	0.03
138.0	5617	5616	5617	138.20	0.09	137.91	-0.04
184.0	6567	6566	6567	184.07	0.03	183.98	-0.01
230.0	7512	7511	7512	229.69	-0.13	230.03	0.01

(mm) Linear Gage Factor (G): 0.04828 (mm/digit)

Regression Zero: 2754

Polynomial Gage Factors:

A: 1.1683E-07

B: 0.04708

Calculate C by setting D = 0 and R₁ = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001901 (inches/digit)

Polynomial Gage Factors:

A: 4.5996E-09 **B:** 0.001854

Calculate C by setting D = 0 and R $_1$ = initial field zero reading into the polynomial equation

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Range: 230 mm

Calibration Date: This calibration has been verified/validated as of 01/08/2018

December 01, 2017

Serial Number: 1741942

Temperature:

Calibration Instruction: CI-4400

Cable Length: N/A

Technician:

Kathy Rogers

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2743	2740	2742	-0.26	-0.11	0.01	0.00
46.0	3707	3706	3707	46.02	0.01	45.98	-0.01
92.0	4671	4668	4670	92.22	0.09	92.01	0.01
138.0	5629	5628	5629	138.21	0.09	138.01	0.01
184.0	6583	6584	6584	184.02	0.01	183.98	-0.01
230.0	7537	7536	7537	229.73	-0.12	230.01	0.00

Regression Zero: 2747

Polynomial Gage Factors:

A: 8.5684E-08

B: 0.04709

(mm) Linear Gage Factor (G): 0.04797 (mm/digit)

Calculate C by setting D = 0 and R, = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001888 (inches/digit)

Polynomial Gage Factors:

A: 3.3734E-09 **B:** 0.001854

Calculate C by setting D = 0 and R $_1$ = initial field zero reading into the polynomial equation

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Range: 230 mm

Calibration Date: December 01, 2017 This calibration has been verified/validated as of 01/08/2018

Serial Number: 1741943

Cable Length: N/A

Kathy Kogers

Calibration Instruction: CI-4400

Temperature:

Technician:

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2774	2774	2774	-0.34	-0.15	0.02	0.01
46.0	3742	3740	3741	46.03	0.01	45.94	-0.03
92.0	4708	4707	4708	92.38	0.17	92.06	0.03
138.0	5665	5665	5665	138.29	0.13	137.98	-0.01
184.0	6620	6620	6620	184.09	0.04	184.00	0.00
230.0	7571	7569	7570	229.64	-0.15	230.00	0.00

(mm) Linear Gage Factor (G): 0.04795 (mm/digit)

Regression Zero: 2781

Polynomial Gage Factors:

A: 1.2191E-07

B: 0.04669

Calculate C by setting D = 0 and R₁ = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001888 (inches/digit)

Polynomial Gage Factors:

A: 4.7997E-09 **B:** 0.001838

Calculate C by setting D = 0 and $R_1 = initial$ field zero reading into the polynomial equation

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Range: 230 mm

Cable Length: N/A

Calibration Date: November 07, 2017 This calibration has been verified/validated as of 11/07/2017

Serial Number: 1739566

Calibration Instruction: CI-4400

Temperature:

Technician:

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2736	2735	2736	-0.36	-0.16	-0.02	-0.01
46.0	3696	3699	3698	46.12	0.05	46.04	0.02
92.0	4654	4653	4654	92.32	0.14	92.03	0.01
138.0	5601	5605	5603	138.20	0.09	137.91	-0.04
184.0	6553	6554	6554	184.13	0.06	184.05	0.02
230.0	7495	7496	7496	229.65	-0.15	229.99	0.00

(mm) Linear Gage Factor (G): 0.04832 (mm/ digit)

Regression Zero: 2743

Polynomial Gage Factors:

A: 1.1617E-07

B: 0.04713 **C:**

Calculate C by setting D = 0 and R_1 = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001902 (inches/digit)

Polynomial Gage Factors:

A: 4.5735E-09 **B:** 0.001856

Calculate C by setting D = 0 and R $_{1}$ = initial field zero reading into the polynomial equation

Calculated Displacement:

Linear, $D = G(R_1 - R_0)$

Polynomial, $D = AR_1^2 + BR_1 + C$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.

Range: 230 mm

Calibration Date: November 07, 2017 This calibration has been verified/validated as of 11/07/2017

Serial Number: 1739567

Temperature:

Calibration Instruction: CI-4400

Cable Length: N/A

Technician:

GK-401 Reading Position B

Actual Displacement (mm)	Gage Reading 1st Cycle	Gage Reading 2nd Cycle	Average Gage Reading	Calculated Displacement (Linear)	Error Linear (%FS)	Calculated Displacement (Polynomial)	Error Polynomial (%FS)
0.0	2416	2417	2417	-0.32	-0.14	0.03	0.01
46.0	3371	3370	3371	46.06	0.02	45.99	0.00
92.0	4319	4321	4320	92.21	0.09	91.94	-0.02
138.0	5266	5267	5267	138.22	0.09	137.95	-0.02
184.0	6212	6214	6213	184.23	0.10	184.17	0.07
230.0	7146	7146	7146	229.58	-0.18	229.92	-0.04

Regression Zero: 2423 (mm) Linear Gage Factor (G): 0.04861 (mm/ digit)

Polynomial Gage Factors:

A: 1.1333E-07

0.04752 **C:**

Calculate C by setting D = 0 and R_1 = initial field zero reading into the polynomial equation

(inches) Linear Gage Factor (G): 0.001914 (inches/digit)

Polynomial Gage Factors:

A: 4.4618E-09 **B:** 0.001871

Calculate C by setting D = 0 and R $_{1}$ = initial field zero reading into the polynomial equation

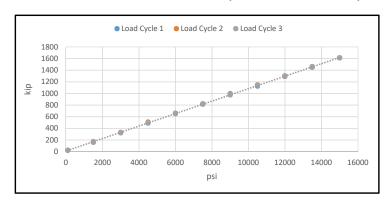
Calculated Displacement:

Linear,
$$D = G(R_1 - R_0)$$

Polynomial,
$$D = AR_1^2 + BR_1 + C$$

Refer to manual for temperature correction information.

The above instrument was found to be in tolerance in all operating ranges. The above named instrument has been calibrated by comparison with standards traceable to the NIST, in compliance with ANSI Z540-1.


4035 J. Louis Street Green Cove Springs, Fl 32043 P: (904) 284-1337 F: (904) 284-1339

AFT-Cell® Calibration Report

Calibration Date	3/2/2018
------------------	----------

Technician Lee Johns
Ambient 77.7

Held in Readiness prior to installation. Calibration interval is 6 months after release used as a reusable jack

Description	15 inch AFT-Cell				
Model	AFT-Cell® Model 15 AFT15-016				
Serial Number					
Uni-Directional Range	1695	kip			
Bi-Directional Equivalent Range	3390	kip			

Calibrating Equipment							
Item	Description	Serial					
Pressure Reference	Ashcroft 20kpsi	1785041					
Load Reference	22MN Load Cell	C3929-13					
Data Acquisition	NI 9219	148B699					
Load Frame	HULC 10000 kip	N/A					

Load Cycle 1		Load (Cycle 2	Load C	Cycle 3	
Stroke (in):	2.00	Stroke (in): 4.00		Stroke (in): 5.00		
Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Nonlinearity (%)
22	100	21	100	21	100	-0.01%
160	1500	169	1500	173	1500	0.67%
323	3000	329	3000	326	3000	0.57%
488	4500	508	4500	501	4500	0.29%
661	6000	652	6000	651	6000	-0.38%
815	7500	822	7500	819	7500	-0.02%
997	9000	974	9000	979	9000	-1.23%
1125	10500	1146	10500	1143	10500	0.67%
1292	12000	1298	12000	1304	12000	0.30%
1450	13500	1460	13500	1460	13500	0.49%
1612	15000	1613	15000	1613	15000	0.44%

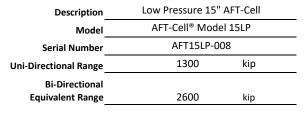
Comments:

Linear Jack Factor	0.1072	kip/psig
Regression Zero	10.9649	kip
		-"
Maximum Nonlinearity	-1.23%	

Applied Foundation Testing, Inc. hereby certifies that this instrument meets or exceeds all requirements for its intended use and the reported calibration factors are accurate to within the limits of the calibrating procedure. Reference standards and calibrations are traceable to the National Institute of Standards and Technology (NIST) where applicable.

Т	ec	hn	ici	an

Approved



4035 J. Louis Street Green Cove Springs, Fl 32043 P: (904) 284-1337 F: (904) 284-1339

AFT-Cell® Calibration Report

Calibratian Data	2/2/2018
Calibration Date	2/2/2010

Technician	Ryan Wendlandt
Ambient	63.0° F

			• Loa	d Cycle 1	Load Cyc	cle 2	• Load (Cycle 3		
kip	1600 1400 1200 1000 800 600 400 200		******	,		•	o • • • • • • • • • • • • • • • • • • •			
		0	2000	4000	6000	80 osi	00	10000	12000	14000

Calibrating Equipment						
Item Description Seri						
Pressure Gauge	20000 PSIG	1785041				
Load Reference	40MN	C4027-12				
Data Acquisition	NI 9219	1A4225C				
Load Frame	HULC 10000 kip	N/A				

Load (Cycle 1	Load (Cycle 2	Load Cycle 3		
Stroke (in):	2.00	Stroke (in):	4.00	Stroke (in):	5.00	
Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Nonlinearity (%)
19	100	19	100	22	100	-0.16%
125	1200	131	1200	144	1200	1.19%
272	2400	281	2400	275	2400	0.19%
412	3600	409	3600	409	3600	-0.32%
537	4800	540	4800	540	4800	0.41%
684	6000	678	6000	678	6000	-0.59%
819	7200	806	7200	815	7200	-0.60%
940	8400	937	8400	946	8400	0.37%
1081	9600	1074	9600	1087	9600	-0.15%
1212	10800	1221	10800	1218	10800	0.09%
1340	12000	1343	12000	1346	12000	0.56%

Comments:

Linear Jack Factor 0.1118 kip/psig
Regression Zero 5.9917 kip

Maximum Nonlinearity 1.19%

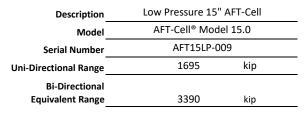
Applied Foundation Testing, Inc. hereby certifies that this instrument meets or exceeds all requirements for its intended use and the reported calibration factors are accurate to within the limits of the calibrating procedure. Reference standards and calibrations are traceable to the National Institute of Standards and Technology (NIST) where applicable.

Technician:

Ryan

Wendland

Approved:



4035 J. Louis Street Green Cove Springs, Fl 32043 P: (904) 284-1337 F: (904) 284-1339

AFT-Cell® Calibration Report

Calibration Date	2/15/2018

Technician	Chan
Ambient	63.3° F

			• Load (Cycle 1	Load Cycl	e 2 • Load	Cycle 3		
	1400								
	1200								
	1000								
kip	800					19 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	-		
	600					""			
	400			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
	200	0.11							
	0								
1		0	2000	4000	600	00 8	000	10000	12000
1					ps	si			

Calibrating Equipment						
Item	Description	Serial				
Pressure Gauge	20000 PSIG	1785041				
Load Reference	40MN	C4027-12				
Data Acquisition	NI 9219	1A4225C				
Load Frame	HULC 10000 kip	N/A				

Load (Cycle 1	Load (Cycle 2	Load Cycle 3		
Stroke (in):	2.00	Stroke (in):	4.00	Stroke (in):	5.00	
Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Nonlinearity (%)
18	100	22	100	24	100	0.06%
110	1000	130	1000	128	1000	0.63%
221	2000	240	2000	238	2000	0.66%
342	3000	342	3000	347	3000	0.19%
447	4000	459	4000	461	4000	0.63%
561	5000	564	5000	573	5000	0.56%
673	6000	679	6000	688	6000	0.58%
798	7000	803	7000	789	7000	-0.18%
905	8000	907	8000	913	8000	0.12%
1008	9000	1023	9000	1027	9000	0.71%
1127	10000	1145	10000	1137	10000	0.33%

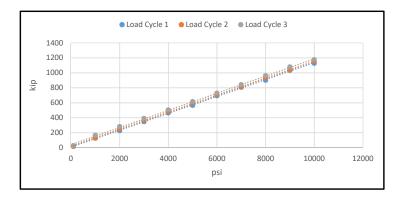
Comments:

Linear Jack Factor	0.1125	kip/psig
Regression Zero	7.7244	kip
		_
Maximum Nonlinearity	0.71%	

Applied Foundation Testing, Inc. hereby certifies that this instrument meets or exceeds all requirements for its intended use and the reported calibration factors are accurate to within the limits of the calibrating procedure. Reference standards and calibrations are traceable to the National Institute of Standards and Technology (NIST) where applicable.

Technician:

Approved:


4035 J. Louis Street Green Cove Springs, Fl 32043 P: (904) 284-1337 F: (904) 284-1339

AFT-Cell® Calibration Report

Calibration Date	2/14/2018	
Technician	Chan	

63.3° F

Low Pressure 15" AFT-Cell			
AFT-Cell® Model 15.0			
AFT15LP-010			
1695 kip			
3390 kip			
	AFT15LP-010 1695 kip		

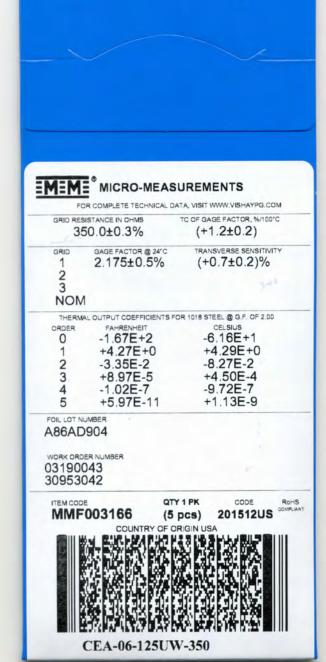
Ambient

Calibrating Equipment						
Item Description Serial						
Pressure Gauge	20000 PSIG	1785041				
Load Reference	40MN	C4027-12				
Data Acquisition	NI 9219	1A4225C				
Load Frame	HULC 10000 kip	N/A				

Load (Cycle 1	Load	Cycle 2	Load Cycle 3		
Stroke (in):	2.00	Stroke (in):	4.00	Stroke (in):	5.00	
Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Reference (kip)	Pressure (psig)	Nonlinearity (%)
15	100	18	100	25	100	1.04%
127	1000	127	1000	165	1000	0.52%
227	2000	248	2000	280	2000	1.29%
346	3000	362	3000	389	3000	0.99%
464	4000	484	4000	502	4000	0.79%
565	5000	596	5000	613	5000	1.55%
694	6000	705	6000	728	6000	0.64%
807	7000	812	7000	841	7000	0.67%
900	8000	930	8000	960	8000	1.91%
1034	9000	1037	9000	1078	9000	0.72%
1128	10000	1151	10000	1174	10000	1.89%

Comments:

Linear Jack Factor 0.1138 kip/psig
Regression Zero 21.6095 kip


1.91%

Maximum Nonlinearity

Applied Foundation Testing, Inc. hereby certifies that this instrument meets or exceeds all requirements for its intended use and the reported calibration factors are accurate to within the limits of the calibrating procedure. Reference standards and calibrations are traceable to the National Institute of Standards and Technology (NIST) where applicable.

Technician:

Approved:

Appendix DAnalysis Method Supplement

Report of Bi-Directional Load Testing I-10 Mobile River Bridge AFT Project No. 518009

Mobile, Álabama

Guide to Calculations and Analysis

Applied Foundation Testing, Inc.

4035 J. Louis Street

Green Cove Springs, FI 32043

P: (904) 284-1337 F: (904) 284-1339

E: info@testpile.com

www.testpile.com

Version	Authored	Approved	Release Date
1.1	JDN	MKM	12/3/2015

Applied Foundation Testing, Inc.

Contents

Introduction	2
Test Setup	3
Bi-Directional Jacks	3
Displacement Instruments	3
Strain Instruments	3
Time Domain Calculations	
Segmental Displacements	2
Cell Level Displacements	2
Segmental Elasticity	6
Load Distribution	
Unit Side Shear	8
Side Shear Calculation	8
Tz Plot	8
End Bearing	10
End Bearing Calculation	10
Qz Plot	10
Equivalent Top Load	11
Creep Limit	12
Legal	13

Applied Foundation Testing, Inc.

Introduction

This document is provided to describe the methodology by which results are obtained from an AFT-Cell® Bi-Directional Load Test. The AFT-Cell® is a proprietary test method that nevertheless conforms to industry-recognized approaches to geotechnical load testing and instrumentation to produce accurate, reliable results. Note that the AFT-Cell test method is in conformance with the soon to be released ASTM standard on Bi-Directional Static Load Testing.

In some cases, this document may be provided in support of a finalized report or as part of a submittal package. It is intended as a general explanation of the methodology used and not an exhaustive or specific guide to any individual test(s). Furthermore, for tests conducted in accordance with a third-party published test method, for any potential conflict between this document and the cited test method the cited test method is to take precedence.

For clarification or additional information, please contact Applied Foundation Testing.

Applied Foundation Testing, Inc.

4035 J. Louis Street Green Cove Springs, FI 32043 P: (904) 284-1337 (office direct)

E: drobertson@testpile.com (Don Robertson)

www.testpile.com

OR

Applied Foundation Testing, Inc.

2345 Success Drive Odessa, Fl 33556

P: (727) 376-5040 (office direct)

E: mmuchard@testpile.com (Mike Muchard)

Applied Foundation Testing, Inc.

Test Setup

Bi-Directional Jacks

For a given AFT-Cell test, one or more groups of one or more AFT-Cell embedded bi-directional jacks are installed in the reinforcement cage prior to installation in the foundation. The jack groups are installed at predetermined elevations commonly referred to as **cell levels** and are plumbed in a manifold arrangement to maintain equivalent pressure amongst all cells at each level. Provided all AFT-Cells at a given level share a common calibration (equivalent area) and are located equidistant from the shaft centerline, fluid statics in this arrangement guarantees that the load distribution will be centralized. Eccentric loading identified in neighboring strain gage levels will therefore be caused by other factors such as the geometry of the shaft and not by any inherent flaw in the test arrangement.

Each cell level is instrumented for pressure measurement at the surface at the supply pump. The cell level is also instrumented for expansion displacement using embedded displacement transducers and/or telltale rods.

An important concept for AFT-Cell testing—and indeed any bi-directional load testing—is that the load is reacted equally above and below the cell level into the shaft such that a reasonable balance of resistance is obtained. The AFT-Cell placement is therefore very important and requires input from the geotechnical engineer of record. Another concept is that the bi-directional loading stress is half that of a top down applied force from an anchored reaction frame or kentledge type top-down load test. In many cases, it may be desired to use the bi-directional results to estimate a would-be top down response of the foundation under test. This requires calculation of an **equivalent top load curve**, discussed in the following sections, which considers the additional stress imposed to the foundation in a top loading scenario.

Displacement Instruments

In addition to the embedded displacement transducer(s) used for cell opening (expansion) displacement, AFT-Cell tests are also commonly conducted with direct measurement of **segmental displacement** and **segmental compression** using cased rods commonly known as **Telltales** and reusable displacement transducers located above the surface. Depending on the test arrangement, Telltales may pass through or terminate above cell levels.

Top of shaft (TOS) displacement is measured directly using digital survey technology. Depending on the test arrangement, multiple digital surveys may be used for redundant measurements or to maintain measurement with respect to a fixed reference point commonly known as a **Backsight**. A traditional **reference beam** has been made obsolete with the advent of digital survey technology. Reference beams, which have always been susceptible to environmental side effects, are therefore not used.

Strain Instruments

Strain transducers in an AFT-Cell test are typically embedded instrumented rebar sections commonly known as **sister bars**. Sister Bars may be based on resistive foil or vibrating wire technology. Resistive gages are more economical, and as reliable as VW gages. Strain transducers are installed in the rebar cage prior to installation at predetermined elevations referred to as **strain levels**. Each strain level contains multiple strain transducers placed with even numbers of gauges per any given level depending on the test arrangement. Generally, **shaft segments** are bounded by strain levels and cell levels

Applied Foundation Testing, Inc.

Time Domain Calculations

The first step in conducting analysis of AFT-Cell test data is to calculate certain useful data in the time domain. Depending on the software application many of these calculations are typically done in real time during the test.

Segmental Displacements

For each Cell Level i the **cell level expansion** is defined in Equation 1.1

$$\Delta_{Cell,i} = \overline{\Delta_{Cell,i,j}}$$
 (1.1)

Where $\Delta_{Cell,i,j}$ is the individual reading of each cell opening displacement sensor at Cell Level i.

Segmental compression values for a given individual shaft Segment N may be determined from one or more instrumented Telltales (Equation 1.2) or alternatively from the average strain in the segment integrated over the section length (Equation 1.3).

$$\Delta_{Comp,n} = \Delta_{TTC,n} - \sum_{k=1}^{n-1} \Delta_{Comp,k}$$

$$\Delta_{Comp,n} = \int \varepsilon \, dL_n$$
(1.2)

Equation 1.3 assumes the strain distribution is uniform over the section length.

Segmental displacement values for a given individual shaft Segment N may then be determined using Equation 1.4 and the results from Equations 1.1, 1.2, and 1.3 or alternatively may be calculated from one or more instrumented Telltales (Equation 1.5).

$$d_n = \Delta_{Cell,n} - \Delta_{Comp,n} - d_{n-1}$$

$$d_n = \Delta_{TTd,N} - d_{n-1}$$
(1.4)

Note that in the previous equations, a special case arises for d_0 which is the **top of shaft displacement.** For this segment, we assume zero length and therefore zero compression. d_0 is then calculated from digital survey values as shown in Equation 1.6.

$$d_0 = \overline{\Delta_{TOS}} - \Delta_{Backsight} \tag{1.6}$$

Cell Level Displacements

The **Top of Cell (TOC) displacement** for a given AFT-Cell level i is calculated as the measured top of shaft displacement plus the elastic compression for the portion of shaft above the AFT-Cell as shown in Equation 1.7 for the case of using segmental compression values. Equation 1.8 is for the case of using direct measurement of elastic compression via Compression Telltale.

$$\Delta_{TOC,i} = d_0 + \sum_{k=1}^{i} \Delta_{Comp,k}$$
 (1.7)

$$\Delta_{TOC,i} = d_0 + \Delta_{TTC,i} \qquad (1.8)$$

Applied Foundation Testing, Inc.

The **Bottom of Cell (BOC) displacement** at the AFT-Cell is obtained using Equation 1.9 and readings from multiple instruments: with embedded cell displacement transducers (where applicable), expansion telltales, or both. The basic calculation is the same in all instances and is simply the total cell expansion less the top of cell expansion determined in Equation 1.7 or 1.8.

$$\Delta_{BOC,i} = \Delta_{Cell,i} - \Delta_{TOC,i} \quad (1.9)$$

The cell level displacement is then plotted versus the cell level gross load to obtain the plot shown in Figure 1. Note that an independent plot can be generated for any given cell level.

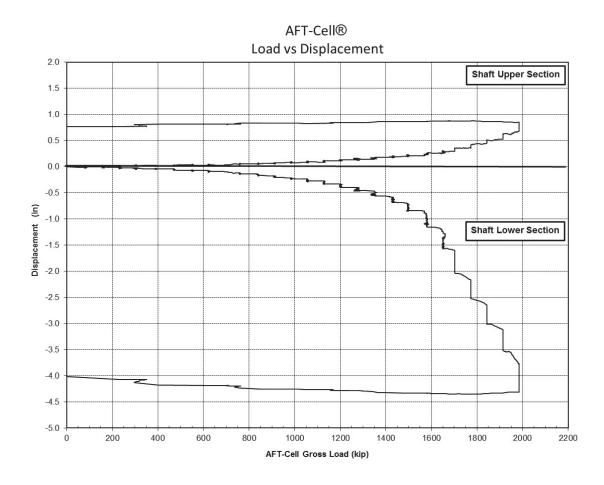


Figure 1: AFT-Cell® Load vs Displacement diagram. Continuous data acquisition.

Applied Foundation Testing, Inc.

Segmental Elasticity

For each Strain Level i, Equations 1.10, 1.11, and 1.12 are applied

$$\varepsilon_i = \overline{\varepsilon_{i,j}} \tag{1.10}$$

$$\sigma_i = E_i \varepsilon_i \tag{1.11}$$

$$F_i = A_i E_i \varepsilon_i \qquad (1.12)$$

Where E_i is the composite modulus and A_i is the effective cross sectional area at Level i.

AFT often uses **Thermal Integrity Profiling (TIP)** for shaft shape profiling to aid in determination of A_i . AFT may use other shape profiling methods such as mechanical or acoustic calipering (**SoniCaliperTM**) if requested by the client, however TIP is the method preferred by AFT due to its ability to address a number of shortcomings in calipering methods.

Borehole calipering adds considerable effort and time during the shaft construction at a time sensitive portion of the construction process: when the shaft excavation is open. The wire method of TIP (ASTM D7949 Method B) minimally impacts the construction timeline and does so during reinforcement cage construction, which is a far less time sensitive phase in drilled shaft construction.

Borehole calipering is also limited in that it measures the shaft dimensions prior to concrete placement. These dimensions have the potential to change between calipering and completion of construction (e.g. sloughing, bulging of weak zones due to concrete forces, etc.). TIP provides an as-built shaft shape profile which enhances the accuracy of the calculation of A_i .

For each Cell Level i, load is calculated from the calibration of the AFT-Cell(s) and the recorded pressure as shown in Equation 1.13 and used as a boundary value for adjacent segments.

$$F_{Cell,i} = 2 * \sum_{i=1}^{k} C_{i,j} P_i$$
 (1.13)

Note the nominal force is doubled in order to represent the bi-directional nature of the applied force assuming that the length of Cell Level i is negligible. Each AFT-Cell is calibrated in-house with NIST traceable equipment.

Applied Foundation Testing, Inc.

Load Distribution

With the given calculations performed, a load distribution plot may now be generated as shown in Figure 2. For each load increment, the level force F_i is presented as a function of elevation. The resulting composite plot provides information about load shedding and the geotechnical nature of foundation under test.

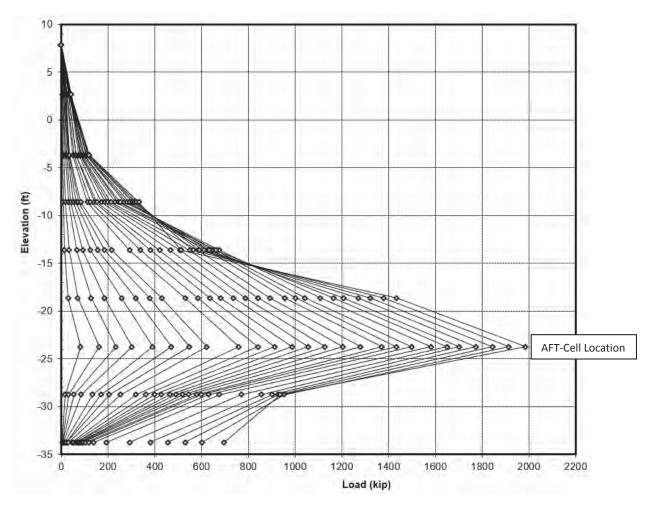


Figure 2: AFT-Cell® Load Distribution plot

Applied Foundation Testing, Inc.

Unit Side Shear

Side Shear Calculation

For each shaft Segment n, the **unit side shear** τ_Z may be calculated from the load shed across the segment and the surface area of the segment. Note that Equation 2.1 is a general form; load directionality and **buoyant forces** change across cell level boundaries.

$$\tau_{Z,n} = \frac{(F_{i+1} - F_i) - F_{Buoyant,n}}{A_{S,n}}$$
 (2.1)

The buoyant force is taken as the equivalent force due to the submerged (below water table) self-weight of the shaft above the segment under investigation. To be consistent with current analysis practice, the load acting upward is assumed to be zero until the buoyant weight of the shaft above is overcome. Therefore, the *net load* is the *gross load* minus the buoyant weight of the shaft above the AFT-Cell.

Tz Plot

Following calculation of $\tau_{Z,n}$ in the time domain, a τ_Z plot is produced by plotting segmental displacement d_n as a function of $\tau_{Z,n}$. Multiple plots are usually produced to maintain a cohesive representation of displacement directionality across cell level boundaries as shown in Figures 3 and 4.

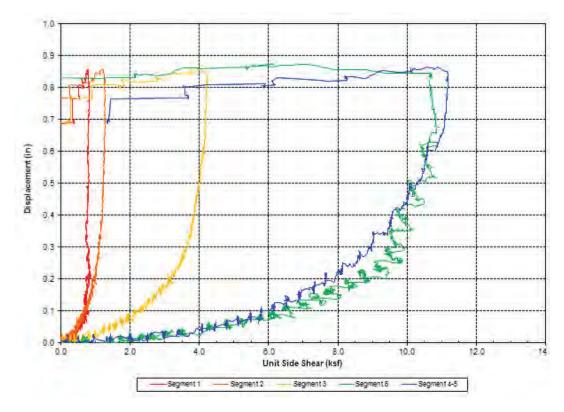


Figure 3: Example of a Tz plot with upward segmental displacements. Continuous data acquisition.

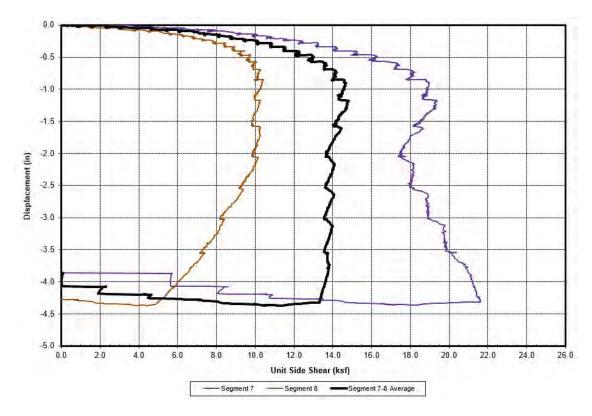


Figure 4: Example of Tz plot with downward segmental displacements. Continuous data acquisition.

Applied Foundation Testing, Inc.

End Bearing

End Bearing Calculation

For the lowest shaft Segment N, **end bearing** q_z may be calculated from the portion of the segmental force reacted through the tip divided by the area of the tip. The key assumption for this calculation is that the unit side shear for Segment N is equal to the unit side shear for Segment N-1, thereby allowing the portions of the segmental force reacted through shear and end bearing to be decoupled as shown in Equation 3.1.

$$q_z = \frac{F_N - (A_{S,N} * \tau_{Z,N-1})}{A_{C,N}}$$
 (3.1)

Qz Plot

Following calculation of q_z in the time domain, a q_Z plot is produced by plotting the displacement d_N as a function of q_z as shown in Figure 5.

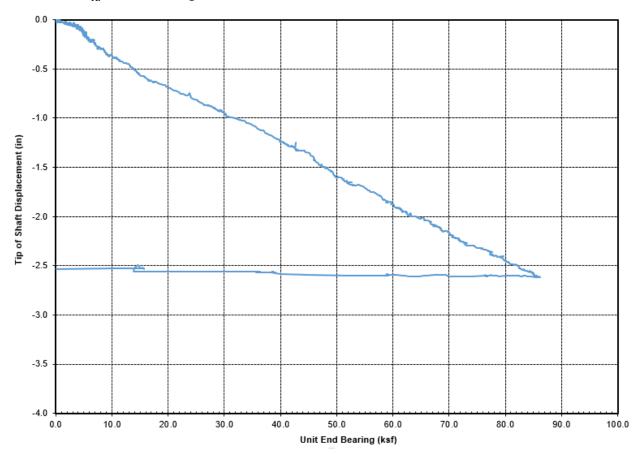


Figure 5: Example qz plot

Applied Foundation Testing, Inc.

Equivalent Top Load

The Equivalent Shaft Top Load vs Displacement plot is produced in order to model the shaft behavior as if it had undergone a traditional top-down static load test. Conceptually, the plot is a representation of the average load-displacement behavior of the shaft Segments between cell level and top-of-shaft and bottom-of-shaft boundaries. Each of these segmental groups can be conceived as a separate load test with their aggregate representing the overall performance of the shaft. For each Cell Level i, at each discrete load stabilized time interval t, Equation 4.1 is used to develop the Equivalent Top Load.

$$F_{Eq,i,t} = F_i \left(d_{i,UPPER}(t) \right) + F_i \left(d_{i,LOWER}(t) \right) \tag{4.1}$$

The equivalent top of shaft displacement for this plot is defined in the time domain according to Equation 4.2.

$$d_{0,EQ,i} = -d_{i,UPPER}(t) (4.2)$$

A more precise calculation for equivalent top of shaft displacement accounts for additional elastic compression in the shaft at the given equivalent top of shaft load as shown in Equation 4.3.

$$d_{0,EQ,Corrected,i} = -\left[d_{i,UPPER}(t) + \sum_{k=1}^{N} \Delta_{Comp,k}\left(\frac{F_{Eq,i,t}}{2}\right)\right]$$
(4.3)

The resultant data is plotted in the Equivalent Top Load domain as shown in Figure 6.

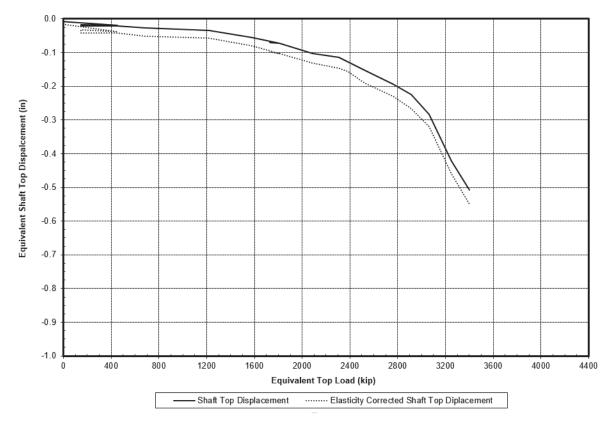


Figure 6: Example Equivalent Top Load vs. Displacement Plot with and without elasticity correction

Applied Foundation Testing, Inc.

Creep Limit

AFT-Cell tests can provide an evaluation for an equivalent top load on the foundation under investigation that could potentially create excessive creep behavior. This load value is frequently referred to as the **creep limit** or **yield limit**. AFT applies the methodology proposed by Housel (1959) to the AFT-Cell test by calculating individual values for creep for segmental groups surrounding the cell levels.

Creep is calculated for each group of shaft segments above and below each Cell Level i during each discrete load stabilized time interval t as shown in Equation 5.1. Generally the data for each segmental group is presented as upper section and lower section creep data, however for multiple cell levels this leads to redundancy and a numbering scheme may be employed.

$$\delta_i = d_i(t_2) - d_i(t_1)$$
 (5.1)

The creep limit plot is produced by plotting creep δ_i as a function of gross load as shown in Figure 7. The creep limit is then judged as the gross load at which significant creep is observed and is indicated by a linear fit. The final value reported for creep limit depends on the nature of the result

<u>Case 1</u>: For two distinct values of δ_i obtained at Cell Level i, the creep limit is defined by the load at which free motion of *both* segmental groups would be observed. Therefore, the greater of the two values is reported.

<u>Case 2</u>: For a case in which one value of δ_i is determined but the other segmental group does not exhibit creep behavior before reach maximum displacement, the creep limit is reported to be <u>unknown</u>, <u>but</u> greater than the maximum load applied to the segmental group that did not exhibit creep behavior.

<u>Case 3</u>: For a case in which δ_i cannot be determined for either segmental group, the creep limit is reported to be <u>unknown</u>, but greater than the <u>maximum equivalent top load</u>.

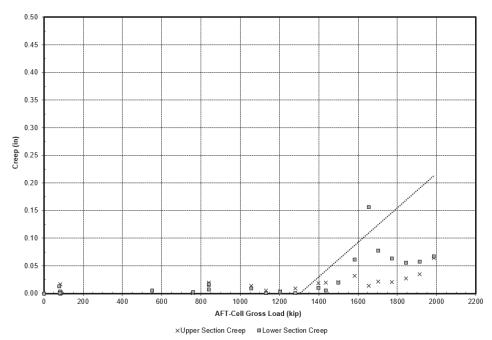


Figure 7: Example Creep Limit plot

Applied Foundation Testing, Inc.

Legal

AFT-Cell® and the AFT-Cell® logo are trademarks of Applied Foundation Testing, Inc. and may not be used or reproduced without prior permission.

This document and any accompanying documents are intended only for use by the individual or entity addressed and may not be used or reproduced in part or in whole without consent from Applied Foundation Testing, Inc.